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In this thesis, we study the problem of fitting a subdivisiarface to an unorganized
point cloud. We choose to use the subdivision surface bedaisa compact repre-
sentation that is capable of representing shapes withramnpiopology.

On the practical side, we describe a general fitting proaedaran optimization pro-
cess. Starting with an initial mesh, the positions of thetidrpoints are modified
to minimize the objective function. The objective functiconsists of the geometric
distance component and the smoothing term component. 8evweeontrol points are
inserted during the fitting process, this involves a mukiged optimization process.

We initially follow the traditional approach, reported imamber of studies in recent
years, of performing foot point projection and solving akn optimization problem

alternatively and repeatedly. The point distance (PD)rdtnaction is commonly em-

ployed in the objective function and the resulting methokinewn as the alternating
method. Itis the PD error function which makes the altentathethod converge only
linearly. In the hope of improving the convergence rate fo fitting process, we

investigate the tangent distance (TD) error function whiak been used in the field
of computer vision and the squared distance (SD) error fomececently proposed by
Pottmann et al. With the use of these distance error fungtiae observe faster con-
vergence rates. We also incorporate some slight modifitatmimprove the stability

of the fitting process and resolve several ill-conditionezbfems.

Besides outlining a general fitting procedure, we also makeral theoretical contri-
butions. We show that methods based on the PD error functegradient descent



method and methods based on the TD error function are Gags$sN method. We
also prove that methods based on the SD error function areddewethod. Compre-
hensive experiments are conducted to investigate the opewvee rates and to reveal
the advantages and disadvantages of the methods basedaus\éistance error func-
tions. We find that the observed experimental behaviors RBMPTDM and SDM
can be explained by optimization theories regarding thdigrd descent method, the
Gauss-Newton method and the Newton method. We also applisusteegion method
and the line search method to stabilize the fitting processs improves the perfor-
mance of the fast converging methods (TDM and SDM).

In summary, this thesis describes the practical flow fomfifsubdivision surfaces to
point clouds and analyzes fitting methods based on vari@igrdie error functions. It
clearly demonstrates the relationships between diffgueadtical fitting methods and
the corresponding optimization techniques.

(417 words)
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Chapter 1
Introduction

In this research, we solve an important problem in the fielda@hputer graphics.
Nowadays, point clouds, the resulting products from 3D standevices, are impor-
tant input sources to the modeling modules in computer geampplications. But,
for further geometrical operations, a more compact reptasien is often required.
Subdivision surface is an appropriate choice since susidivisurfaces can represent
shapes of arbitrary topologies. We use Loop’s subdivisimfaseS [1] in our im-
plementation, but the material discussed in this thesisbeaapplied to other linear
subdivision schemes as well. To make our approach work foerge situations, we
work on raw point clouds.

First, the general flow for fitting subdivision surfaces torganized point clouds is
described. To start the fitting process, an initial subdwvisurface is generated from
the point cloud by applying the dual marching cubes approdather approaches,
which can give initial meshes of correct topologies withsk@sable number of control
points, can be used in this step. Then, the control pointsradified by optimizing
the goal function through iterative minimization. Throwgih the fitting process, the
number of control points is increased and some other paemate adjusted when
necessary. Hence the whole process is a multi-staged aption problem.

From the optimization point of view, surface fitting probléa nonlinear least squares
problem. The detailed problem formulation will be given@tgon 1.1. Simply speak-
ing, the goal function consists of a geometric distance trtha smoothing term. Dif-
ferent distance error functions can be used as the local Inebdee geometric error
term in the goal function. Throughout decades, many rekeesdackle this problem
by following the paradigm of the alternating method, of whibe key idea is to sepa-

1



CHAPTER 1. INTRODUCTION 2

rate the variables into two groups and then solve a lineat kguares problem and a
one-dimensional minimization alternatively. In these moeks, surprisingly, the point
distance (PD) error function seems to be the undoubtableelmr the local model of
the geometric distance term. Since only linear convergeaiteecan be obtained from
these methods, we consider other distance error functiorgrticular, the tangent
distance (TD) error function and the squared distance (@) &unction. (The de-
tailed descriptions about various distance error funstiwil be given in section 2.3.)
With the replacement of the distance error function, we ble @ obtain faster conver-
gence rates. Furthermore, we describe how to make use oftrenberg-Marquardt
(LM) method and the Armijo method for improving the stalyildf the optimization
methods.

On the other hand, we find that there does not exist a compsefeaiheoretical study
on optimization methods for surface fitting. So, besidesgiley efficient methods
for subdivision surface fitting, we also aim at providing lgses of the optimization

method. We show that PDM, methods that use the PD error iumcre the gradient
descent method and TDM, methods that use the TD error functiee the Gauss-
Newton method. We also prove that SDM, the newly devised atkthat uses the
SD error function, can be derived from the Newton method.eBam the theoretical
study of these methods, the behaviors observed in the expets can be explained.
The relevant fundamental theories in optimization andrthedations with the opti-

mization methods used in the surface fitting problem will vey in section 5.

1.1 Problem Formulation

Throughout the thesis, we adopt the notation defined in #uasan. The target shape
is denoted by, which is a point cloud. It is assumed that the underlyindesigr of the
target point cloud is a twice differentiable smooth surfatlee subdivision surfacé

is the active subdivision surface used to fittaS has a control mesh which consists of
n control points. Throughout the fitting process, the posgiof then control points
P = {P,} are modified according to the optimization results. In soituasons,» can
be increased so as to increase the degree of freedom fowenghieetter fitting result.

During the process of forming local quadratic models of tbaldunction and eval-
uating fitting error, points on the subdivision surfageare sampled. These points,
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P(u,vx), onS are denoted to be sample points. @ndwv, are surface parameters)
andN is the number of sample points.

After defining the notations, we would like to formulate threlplem formally. The sur-
face fitting process can be formulated as the following madr least squares problem:

N
Minps®(P,s,t) =Y SDF(P,s;t;) + SMT(P), (1.1)
=1
where the variables ale = {P;} (control points of the subdivision surfac®d and
s = {s;}, t = {t;} (sets of surface parameters of the foot pointsl'ofor sample
points P(uy, vx)). Sample pointsP(u, vx) are linear combinations of the control
points P,. SDF(-), the squared distance error function, gives the square¢dndiss
between sample point8(uy, v;) and their corresponding foot poiniy s, ¢x) onT'.
SMT(-) is the smoothing term, which is a quadratic function of thetod pointsP.
The procedure for solving this problem will be discussedetads in section 2.2 in
the next chapter. During the fitting process, the influenc8af7’(-) is adjusted and
the number of control points:f of the subdivision surfac§ is gradually increased via
local subdivisions in regions of large errors. Hence ounfitprocess is a multi-staged
optimization.

1.2 Related Work

The problem of computing a compact surface representafiantarget shape given
by a set of unorganized data points has many applicatiormmnpater graphics, CAD,
and computer vision. A typical example is computing a piasevemooth surface,
which can be a B-spline surface (including a NURBS surfaceg subdivision sur-
face, that approximates a given target shape within a peeHspd error tolerance.
Compared with the traditional methods based on B-splinases, the approach using
subdivision surfaces has gained increasing attention @tieetfacts that subdivision
surfaces can deal with object of general topology and theg habitrary connectiv-
ity of the control meshes [2, 3]. Approaches of differentegatries were proposed
over the past decade. These include local fitting approddhéd], active surface ap-
proaches [12—-23], implicit surface approaches [24—-27]ahdr approaches [28-32].
Among the previous works, some are more relevant to thegodati problem that we
are solving. In Hoppe et al.'s method [4, 5], an initial densesh is generated from
a set of unorganized points and is then decimated to fit tigetahape via optimiza-
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tion of an energy function. Finally, a smooth subdivisiorface is obtained from the
mesh again via optimization. In Ma et al.'s method [7-9],ebagrfaces are built for
obtaining the parameter values of the data points. Thensh $emares procedure is
used to fit B-spline surfaces on patches of general quaghdlitiopology and Catmull-
Clark surfaces on extraordinary corner patches. In [10kedt point search on Loop’s
surface is performed by combining the Newton iteration amakimear minimization,
followed by an optimization with respect to tlié metric. In these methods, when the
geometric error between the fitting surface and the targgiesheeds to be measured
or minimized, the PD error function is used. Optimizationtihhegls belong to such a
scheme, also called the alternating method [33], is tylyicaed for solving separable
nonlinear least squares problems, and is known to have s convergence.

In this research work, we propose to use the TD error funcmhthe SD error func-
tion in the goal function. The fitting behaviors of varioustdnce error functions
are observed in the experiments. Our work differs from the tlosely related re-
cent works (Pottmann et al.'s work [34] and Kobbelt et al.srkv[35], the extension
of [10]) in several aspects. Pottmann et al.'s work makesofi&DM in the problem
of B-spline surface fitting. Compared with their work, we fpem multi-staged opti-
mization which allows control point insertions. Moreovee tackle the problem of
automatic initial shape specification by applying the duafching cubes algorithms.
Kobbelt et al.'s work applies the blend of PDM and TDM in suhsion surface fit-
ting problem. In our work, besides PDM and TDM, we also coesi@DM. More
importantly, our work fills the gap between the classicalroation methods and the
practical fitting procedures used in decades in the field ofpder graphics by pre-
senting the theoretical analysis of old and new fitting megh@n top of that, we also
propose stable algorithms by applying a trust region me#imatla line search method
to the optimization process.



Chapter 2

Background

2.1 Subdivision Surfaces

Subdivision surface is defined by a control mesh and a setaafigigion rules. Given
a control mesh, the limit surface can be obtained by applghegsubdivision rules to
the mesh successively.

In 1974, Chaikin devised a subdivision scheme for curve [36]. It Vedsr proved by
Riesenfeld [37] that the limit curve under Chaikin’s subsiion scheme is a quadratic
B-spline curve. In1978, Doo-Sabin surfaces [38] and Catmull-Clark surfaces [39]
were devised. After that, there were many subdivision s&sefh—3, 40, 41] pro-
posed in the literature. Subdivision surface can be claskifi different ways: pri-
mal [1,39-41] or dual [38]; triangular [1, 40] or quadriled&[38, 39, 41] and interpo-
lating [40,41] or approximating [1, 39]. Primal schemesrdb schemes that involve
face refinements while dual schemes refer to schemes tluv@wvertex refinements.
Face refinements mean that new faces are generated fromigmalfiace according
to the subdivision rule. Vertex refinements mean that newoesr are generated from
one original vertex according to the subdivision rule. &cek in triangular scheme
consist of triangular faces while surfaces in quadrildtetheme consist of quadrilat-
eral faces. Under interpolating schemes, points in conteshes are also points in the
limit surface. Under approximating schemes, points in m@mheshes are in general
not points in the limit surface.

In our work, we choose to use Loop’s surface [1]. Loop’s sahemgeneration of
quartic triangular B-splines devised 1887, is primal, triangular, approximating and
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can produce tangent plane continuous surfaces. Althougbheese to implement
this particular scheme, our proposed method and analysiseapplied to any linear
subdivision scheme. In linear subdivision scheme, coqoatts of subdivision sur-
faces in the next level can be expressed as a linear comtmraftcontrol points in the
current level. Consequently, points on the limit surface lba expressed as a linear
combination of the initial control points. Figure 2.1 shothe meshes from the first
level to the sixth level for a polygonal cone. Figure 2.2 shtke first, the second and
the third levels of the mesh for the Bunny model.

() (b) (c)
(d) (e) ()

Figure 2.1: Loop’s surface: (a) The' level mesh (no. of triangles:6). (b) The2"?
level mesh (no. of triangless4). (c) The3™ level mesh (no. of triangle<56). (d)
The 4" level mesh (no. of trianglest024). (e) The5™ level mesh (no. of triangles:
4096). (f) The 6 level mesh (no. of triangleg:6384).

Now, we describe Loop’s subdivision scheme. This schemessgyded to apply to
triangular polyhedra. For one level of subdivision, a tglkens split into four triangles
by adding on each edge a new verfex given by

3 1
Py = g(Pa + b))+ g(Pc + Py),

whereP,, P, are the two vertices of the edge, aRd P, are the other vertices of the
two triangles that are incident to the edggP,. See Figure 2.3.
Then the original vertice®,; are modified by the following rule:

k
P, =1 =kB)Pi+ B Puuy),
j=1
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Figure 2.2: Loop’s surface: (a) The® level mesh (flat shading) (no. of triangles:
3040). (b) The2"? level mesh (flat shading) (no. of triangle<160). (c) The3™ level
mesh (flat shading) (no. of triangle£s640). (d) The3™ level mesh (smooth shading)
(no. of triangles#48640).

(a) (b)

Figure 2.3: (a) Before the insertion &%. (b) After the insertion oy .
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wherek is the degree of the vertek and P, ; is the j' neighboring point of?,
6 =3/16if k = 3, and

115 3 1 2\ 2
52%[@‘(@*1”*(?))]

if &> 3.

Figure 2.4 illustrates the modification &f.

Figure 2.4: (a) Before the update Bf. (b) After the update of’;.

2.2 Solving Approach: Separation of Variables

As we described in the Problem Formulation section in theipus chapter, the subdi-
vision surface fitting process solves for the varialitegnds, t in Equation 1.1. How-
ever, the variables are not all solved at one time. Instéey, are separated into two
groups,(7) P and(i7) s, t. For fixedP, it is easy to minimize each terfD F' (P, s;, ;)
with respect tos; andt;. This step is done by the foot point projection. During foot
point projection, for each sample poiR{u;, v;) on S, its closest poinR(s;, t;) onT’

is found. After the step of foot point projection, the vategs andt are fixed to b&
andt. Then, in the next step, the minimization problem becomes:

N
Mine)¥(P) =Y SDF(P,5;,%;) + SMT(P), (2.1)
=1
which is a linear least squares problem. In this way, theineat least squares problem
is solved by performing foot point projection and solvingireehr squares problem
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repeatedly and alternatively. In other words, separatforanables turns a nonlinear
least squares problem into a series of linear least squeokbems which can be solved
more efficiently. Furthermore, during the fitting processsimemory space is required
when the problem is solved using this approach since the auwibvariables at a
particular stage is much fewer. In this research work, weystiarious local models
for SDF(-) in the goal function and aim at obtaining better fitting perfance. Three
different distance error functions are discussed in the seotion.

2.3 Distance Error Functions

During the fitting process, a goal function needs to be defifldte geometric error

between the fitting subdivision surface and the target dmuters the main part of the
goal function. In practice, various different error furcts are defined as the local
guadratic models of the objective function.

Given a sample poinP(us o, vk) On the fitting subdivision surface, its foot point,
R(sk, tx), on the target shapk is determined. In other word®(sy, tx) is the clos-
est point onl’ to P(uy0,vk0). Then, the distance error function for a variable point
P(ug,vi) (in the neighborhood aof (ux o, vx o)) to I' can be defined in several ways.

2.3.1 Point Distance Error

The (squared) point distance (PD) error function is defined b
Fip(P(ug, vy), sk, t) = || P(ug, v) — R(sg, ti)[13- (2.2)

Optimization schemes using the PD error function are c&@dt Distance Minimiza-
tion (PDM). PDM is widely used in existing optimization apaltions such as [42—44].
From the theoretical point of view, PDM is just the gradieascent method. It is well
known to have linear convergence rate. The simplicity of thtror function may ex-
plain its popularity.

2.3.2 Tangent Distance Error

The (squared) tangent distance (TD) error function is ddfine

F;D(P(uk, Uk), Sk, tk) = [(P(uk, Uk) — R(Sk, tk))TN]z, (23)
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where\ is the unit normal vector at the foot poift sy, t;).

Optimization schemes using the TD error function are call@dgent Distance Min-
imization (TDM). Blake et al. [12] used the TD error in the pkem of extracting
boundary curves of the objects in images. From the theatgimnt of view, TDM is
the Gauss-Newton method. For zero residual problem, it idamewn that the Gauss-
Newton method has quadratic convergence rate [45—-47].dfge Iresidual problem,
the Gauss-Newton method can have unstable behavior andtcacimieve quadratic
convergence rate.

2.3.3 Squared Distance Error

Recently, Pottmann et al. [34, 48, 49] proposed a generaldpan of shape approx-
imation based on the minimization of a novel quadratic apipnant of the squared
distance function. Let = || P(uy 0, vk0) — R(sk, tx)||2 be the Euclidean distance be-
tweenP (u o, vk o) @NdR(sg, tx). Let p; andp, be the principal curvature radii of the
surfacel” at R(sy, tx). Let7; andZ; be the unit vectors in the corresponding principal
curvature directions. LeV/ be the unit normal vector, i.eN = 7; x 75. A quadratic
approximant of the squared distance function from a vagiglolint P(uy, vy.) in the
neighborhood of (uy, o, v o) to I is given by

Fip( Pl t)sstt) = - ((Plus, ) = Rlou, )T
d T 2
Al — [(P (g, i) — R(sk, tr))" 1]

+ [(P(uk,vk) —R(Sk,tk))TN]z. (24)

It is noticed thatF'y,,(-) can be negative since the coefficiegté- and - can be

Pl P2
negative. In practice, this function is modified as followsénsuring that the resulting
matrix for the local quadratic model is positive definite:

Fip(Pluvst) = | 20| (Pl ) = Rl )T
d T 2
] 1P — R

+ [(P(ug, v) — R(sp, t)) " N, (2.5)

where|z]o = max{z,0}.
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The signs ofd, p; and p, are determined with respect to the local frame at the tar-
get point. The radii of curvaturg, ,, is positive if the curvature center in the normal
section along the tangent vectdy,, is outside the target shape. Otherwigg, is
negative. Figure 2.5 illustrates the cases for positiveature and negative curvature.

N

outside -- " [

Figure 2.5: Left: Positive curvature; Right: Negative @twwre.

This function is called the squared distance (SD) errortionc Optimization schemes
using the SD error function are called Squared Distance riWization (SDM). The
ellipsoid in Figure 2.6 shows an iso-distance surface definyethe SD error function
for surface fitting.

Figure 2.6: An iso-surface of the SD error function, with adbcoordinate frame at
the pointp.

Pottmann et al. applied SDM successfully to solve a seriegeofnetric optimiza-
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tion problems, including the problem of fitting B-spline eas and surfaces to some
smooth target shapes [34,48]. Yang et al. [50] studied hodefme initial shapes
and adjust the number of control points when using SDM fopBag curve approx-
imation. Wang et al. [51] solved the B-spline curve fittinglplem using SDM by
projecting the points in the target point cloud to the B4splcurve. In our work, we
use the SD error function in the problem of fitting subdivissurfaces to point clouds.
SD error function is an appropriate error metric for shaggaymation since it mea-
sures the distance from a data point to a surface rather feadistance from a data
point to a particular point on the surface. Unlike the PD efumction, the SD error
function takes the local geometry of the target surfaggo account. At low curvature
regions of the target, the points of the fitting surface cawertangentially to attain
a better distribution without causing much penalty from 82 error term. However,
tangential movement is inhibited by the PD error term. Fer T error term, it is
not stable near high-curvature regions because tangerdgpéae poor approximations
to the surface in high-curvature regions. Inappropriatgeatep size is used in TDM
and this is due to the omission of important curvature rdlaiats in the true Hessian
of the goal function. From the theoretical viewpoint, ona ggew SDM as a modifi-
cation of the Newton method. It converges much faster thacdmmonly used PDM.

In chapters, relationships between PDM, TDM, SDM and the standard dpttion
methods are given in more details. Furthermore, we will stiawvSDM can be derived
from the Newton method. Hence, we expect that SDM has betteecgence behavior
than PDM (which is known to have only linear convergence).



Chapter 3
Fitting Procedure

In this chapter, we describe the general flow of fitting suistim surfaces to point
clouds. More detailed issues about some steps in the procade discussed in the
next chapter. Different optimization methods, such as PDBIM and SDM, share

the same flow. Figure 3.1 illustrates the overall procedure.

3.1 Normalization of Target Shape

The dimensions of input point clouds are arbitrary. DifféraD scanning systems or
modeling modules produce models of different dimensionsortler to avoid the de-
pendence of the parameters in the optimization system oditrensions of the input
point clouds, target shapes are normalized by uniformrsgalich that all data points
fall in the cube|0, 1]3. Specifically, the longest dimension amangy and: is scaled
to 1.0. This step makes the terms in the least squares formulatibie ss.

3.2 Pre-computations of Distance Field and Curvature
Information

We tackle the subdivision surface fitting problem using thpraach of separation of
variables. Foot point projection is one of the key stepssBtep is costly if foot point
projection is done in a brute-force manner. To improve thieiehcy of setting up
the local model of the goal function, distance field for thrgéa shapé’ is computed.
Also, curvatures, which are required in SDM, are also comghin a preprocessing

13
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‘ start

Normalize the target

v

Pre-compute the
distance field and
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v

Evaluate fitting error

Need to refine the
control mesh?
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Figure 3.1: The fitting procedure.
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14



CHAPTER 3. FITTING PROCEDURE 15

step.

3.3 Initial Mesh Generation

To start the optimization process, an initial control mesttife fitting subdivision sur-
face is required. Since the approach described in thisghesiot a global approach,
the initial mesh cannot be too far away from the target. Taioban initial control
mesh, we start with an octree for the target shape and thieawfthe procedure in
the dual marching cubes algorithm [52]. For more details,ssxtion 4.3 in the next
chapter.

3.4 Points Sampling on Active Subdivision Surface

Setup of the equation for minimizing the goal function aneeevaluation require a
set of sample point®(uy o, v o). These sample points are the points on the limit sur-
face of the active subdivision surface. They are generatgtdjuhe approach devised
by Stam [53, 54].

3.5 Egquation Setup

After the N sample points?(uy o, vk o) are generated in the previous step, the follow-
ing goal function can be set up:

N
FH(P.st) = % ; F25 (P, 00), 50, t) + AL, (3.1)

whereP(uyg, vy,) is a variable sample point associated Wittwy, o, vk o), s, @andt,, are
the surface parameters of the foot pointlorior the sample poinf(uy o, vo) and
F#(-) is the local quadratic models for the geometric error pathefgoal function.
Depending on which distance error function is useg(-) can beF s, (-), F;,(-) or

F3,(+) (the distance functions for PDM, TDM and SDM described in phevious
chapter).F, is a smoothing term anilis the coefficient forf.
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Compared with the PD error, the TD error and the SD error rechie normal vec-
tor information. Additionally, the SD error further reqeg the curvature information.
Those normal vector and curvature information can be obthgfficiently after the
pre-processing steps.

3.6 Equation Solving

Since the variable sample poiR{uy, v;) is a linear combination of the control points
P,, the functionF7 (-) is a quadratic function of th&;. SinceF; is also a quadratic
function of the control point®;, the whole goal function is a quadratic function of the
control pointsP;. The updated control points; can be computed by solving a linear
system of equations. Moreover, since each variable sanoph B(uy, v;) is only in-
fluenced by a small number of control points, the matrix fermdsulting linear system
of equations is sparse. So, in the implementation, instéatbdng the whole matrix,
a sparse data structure [55] is used. After that, insteagiofyjulsome direct methods,
we use an iterative method, the conjugate gradient (CG)adddb, 56—60], to solve
the equation. Then the positions of the control points ofgiledivision surface are
updated accordingly.

3.7 Error Evaluation

After the control points have been updated, the maximunr dryp and root-mean-
square erro¥,,,, are evaluatedr,, is defined by the maximum of the distances of all
the sample point® (uy, o, v 0) 0N the fitting surface to the target shapk, i.e.

E, = m]?X{||P(uk,o, Uk0) — R(sk, te)l[2}-

E,... is defined as:

(SIS

1
Erms = N ; ||P(uk,07 Uk,O) - R(Sk,tk)”%

If E,.. falls below a pre-specified error threshold, the fitting gssccan be termi-
nated. Otherwise, the control mesh needs to be refined.

(E,ms can roughly reflect the visually-perceived error.Flf,,, is small, the visually-
perceived errors for most regions should be small. On therdthand, ifE,.,,,, is large,
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the visually-perceived errors for most regions should bgdalf £,, is much larger
than E,,,,, some regions are likely to have relatively larger visugigrceived error
than other regions. The reason is the lack of degrees ofdmedd those regions
which need local subdivisions.)

3.8 Control Mesh Refinement

WheneverE,, stops getting improved, new control points are insertedvéregions
of large errors so as to increase degrees of freedom for Ihigtitey.

Then, the fitting process will continue from the step "samglon the active subdivi-
sion surface”.



Chapter 4
Implementation Issues

In this chapter, we discuss some implementation issuesriaugasteps of the fitting
procedure.

4.1 Curvature Pre-computation

The curvature information of the target shape is require8M. As described in
the previous chapter, this information is pre-computedefficient access later. We
employ the following simple method for our purpose. For aegitarget pointz;, its
neighboring points?,; ;) are identified. To do this, the neighborhood size, which de-
pends on the sampling density of the point cloud, needs tetemined. The process
of neighboring points identification is speeded up by theaisa octree for the target
points. LetR., denote the centroid of the neighboring points. Then, thecgal
curvature directions and the normal direction are compatethe eigenvectors of the
covariance matrixy given by

CV = (Rugij) = Rei)(Rugij) — Rei)”.
j

After that, we fit a quadratic polynomial (in the form of= k2% + kyy?) to the points
R, j in the local coordinate system formed with the principalvetumre directions
and the normal direction &. ;. With the coefficients:;; andk, determined, the prin-
cipal curvatures are simpt; and2k,. Besides this simple approach, there exist other
methods. For example, Goldfeather et al. [61] proposeddtimating curvatures and
principal directions from point clouds using a cubic-ordkgorithm.

18
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4.2 Distance Field

When the equation for minimizing the goal function is set fgqmt point projection
is required. To improve the efficiency at run time, we comparneadaptive distance
field of the target shape in preprocessing using the ideaogespin [62]. During
the optimization process, the distance for a sample pgints computed by trilinear
interpolation from the stored values in the smallest noderatihe sample point is
located. Similar pre-computation technique of the distdiedd has been used in [50].
Figure 4.1 shows an adaptive distance field for the ball joint

Figure 4.1: An adaptive distance field for a ball joint.

4.3 Initial Mesh Generation

To start the optimization process, an initial control mesheiquired. One approach
is to construct an octree partition of the point cloud withform cell size. Then, a

mesh is obtained using the Marching Cubes algorithm [63¢ ddil size of the octree
is small enough so that the resulting mesh has the same tppatothe target point

cloud. To capture small features of a target shape, the Magc@ubes algorithm can

be applied with a sufficiently small cell size to obtain a deimstial mesh before sim-

plifying the mesh adaptively to reduce the total numberiahggles [64].

Schaefer et al. proposed Dual Marching Cubes approachlfp2jr implementation,
we follow this approach since it is an adaptive approach dsalifdoes not require
extra cracks-filling process. Initially, an octree is builluring the generation of the
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octree, whether a cell needs further subdivision dependbh®mesidual value of a
QEM-like quadratic error function [64]. (The function issigibed below shortly.) If
the residual value of a node exceeds a threshold value, theeiadurther subdivided
into eight children. In this way, the sizes of the leaf nodes reot of uniform size.
Next, one feature point is determined in each octree celbpiamizing a QEM-like
quadratic functior@Q D(-). Specifically, inside each cell, the function to be optindize
has the form:

B (w— Gi<p))2
QD) = D T T dp

whered(-) is the cost function in the cell (in our case, the distancetion), p is the
feature point to be foundy is the value ofi(-) atp andG,(-) is a function defined at
Di-

4.1)

Gilp) = vd(p)" (p — pi), (4.2)
wherep; are sample points used for forming the quadratic functigrofdimization.

In our implementation{(-) is set to be the signed distance function and the corners of
the octree cells are taken to pe

Since the feature point of a cell should be inside the cellrothe boundary of the
cell, constrained optimization is carried out. We call thet&blve++ library for the

optimizations. After that, a dual grid is constructed udimg feature points in the oc-
tree cells. Finally, the initial mesh is generated by rafeneg the lookup table (used
in the ordinary Marching Cubes algorithm) for each cell ie ttual grid. Figure 4.2
illustrates the procedure for the dual marching cubes dhgor Figure 4.3 shows the
octree and the dual grid for a horse.

Another approach is to model small details by adding a digptent map over a
smooth surface [65]. The visual output from this approadmigressive but it does
not meet our goal of computing a complete surface represenfar a point cloud.

4.4 Efficient Point Sampling on Subdivision Surface

From the formulation of the goal function, sample pointslengubdivision surface are
required. Given the control poini3, the task is to evaluate sample poiftSy, o, vy o).

According to the essence of subdivision surface, sampletpan the subdivision
surface can be obtained by applying the subdivision ruleatgally on the control
mesh which is defined initially by the control poin&s However, it is not clear how
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Figure 4.2: Procedure for the Dual Marching Cubes Method.

Figure 4.3: An octree and a dual grid for a horse.
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to evaluate the particular poitit(uy o, vo) With the parameters, , andv, o before
Stam devised his approach in [53,54]. In his approach, diversubdivision matrix
(determined by the subdivision scheme), the eigenstractithe subdivision matrix is
analyzed. With the pre-computed coefficients of the eigsisifanctions (these need
to be computed once for a subdivision scheme), the sampté Boic. o, vi. o) can be
computed efficiently by:

P(Uk,(), Uk,o) = PT@(“R,O? Uk,O); (4-3)

whereP = {P,} is the control points of the subdivision surface drid stores the
eigenbasis functions.

In our implementation, we follow Stam’s approach for sanga&ts evaluation on the
subdivision surface.

4.5 Indexed Storage for Sparse Matrices

Since each sample point on the subdivision surface is juséard combination of a few
control points, the matrix for solving the linear system qéiations is sparse. In order
to reduce the storage for zero elements and the computatierfar the matrix oper-
ations, an indexed storage, instead of the whole matrixsesl uUWe apply the indexed
storage described in [55]. It is a row-indexed scheme, irctviivo one-dimensional
arrays are used. All the diagonal elements, including zEnments, are stored. But,
for off-diagonal elements, only non-zero elements areestoil herefore, the storage
size required by this row-indexed scheme is roughly two sithe number of non-zero
elements in the matrix. This scheme contributes a largecteufrom the full matrix
representation for a sparse matrix.

This sparse representation is simple for a matrix to myliigklf or its transpose by a
vector to its right.

4.6 Equation Solving using the Conjugate Gradient Method

Once the linear system of equations for minimizing the goatfion has been setup,
it can be solved by applying direct methods such as Gauskmmation or Cholesky
decomposition. However, these methods are expensiveiapéar problems of large
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dimensions. For example, both Gaussian elimination andeSky decomposition
costO(n?) if the number of equations is.

The conjugate gradient method (CG) is a well-known iteeatnethod [45,56—-60] that
can be used to solve linear systems of which the coefficiemticea are symmetric

and positive definite. Specifically, the function to whick tbG method applies should
have the form:

f(z) = %xTAx — bz, (4.4)

whereA is symmetric and positive definite.

Given an initial guess,, iteratesr; are generated according to the following formulae:

Ti1 = X + 0, (4.5)

Tig1 =T — o Ap;, (4-6)
rlp,

;= 4.7

7T T Ap; (4-7)

Di+1 = Ti+1 + SiPi, (4.8)

and
T
Tip1Ti+1
.= . 4.9
> T?Ti ( )

In the above formulaey; is the search direction for thé&" iteration and it can be veri-
fied easily that; is the residuel(— Ax;) for the:" iteration. Initially,ro = b — Ax,

andpo =T19.

Given the directiom;, the new iterate is generated by moving the current itetatega
this direction by a step siz&. o; is obtained by a one-dimensional minimization.

df (x; + oipi)
dO'Z'

After settingdf(%‘jﬂ”) to zero (a necessary condition ffx; + o;p;) to have a mini-
mum), we have,

= pz’TAxi + UipiTApi — pin- (4.10)
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pZTTz‘
pl Api’
And also.; is determined such that,, is orthogonal to aldp; andr;, wherej < i.

g; =

(4.11)

To summarize, the vectors in the CG method have the follopmogerties:

pi Ap; = 0,Vi#j;

rir; = 0,Vi#j;

and

T?Api = p;TFApz'-

From the above properties and for the reason of computatedficiency, o is com-
puted using Equation 4.20 rather than Equation 4:11;(needs to be computed any-
way). It can be observed that only matrix-vector multigiicas and inner-products are
required in the CG method. Matrix-vector multiplicatiorre &arried out efficiently
since the matrix involved is a sparse matrix and is storedhimdexed structure [55]
(described in the previous subsection).

Theoretically, the maximum number of iterations neededoisndled by the number
of distinct eigenvalues of the matrix [57,59, 60]. More specifically, the number of
iterations depends on the distribution of the eigenvaldekecoefficient matrix. In
general, the performance for the CG method is better fofficoait matrices that have
clustered eigenvalues distribution than coefficient magithat have uniform eigen-
values distribution.

The coefficient matrix for the linear system is determinedh®yproblem. But, in order
to improve the convergence rate of the CG method, a technaglied precondition-
ing, can be applied. The idea is to pre-multiply another ixatr the original matrix
so that the modified problem, of which the coefficient matras fa better structure
from the viewpoint of the CG method, can be solved in a moreiefit way. A simple
way to construct a matrix for preconditioning, also knowrJasobi preconditioning,



CHAPTER 4. IMPLEMENTATION ISSUES 25

is to use a diagonal matrix of which the diagonal elementsha@eorresponding ele-
ments of the original coefficient matrix [56]. For precomaliing, the substitution for
& = M2z is made and Equation 4.4 becomes:

1
f(&) = §:ET(M—T/2AM—1/2):@ — (M~T2p) T, (4.12)
From the implementation point of view, the modification focorporating precondi-
tioning is minimal. An additional solving of the followingyeation is needed:

whereM is the matrix for preconditioning.
Then, some of the original formulae are modified accordiglyollows:

w;: r;
op = —L 1 (4.14)
pi Ap;
Di+1 = Wit1 + SPi, (4.15)
and
T .
G = oLt (4.16)

The CG method works for the problems that have symmetridigesiefinite coeffi-
cient matrices. For problems that do have non-symmetricioeat one approach is to
solve the normal equation instead of the original problem (o solveA” Az = ATb
instead of solvingdx = b). This approach is sometimes known as the CGNR method
(Conjugate Gradient Method on the Normal Equations) [S6i{h@ugh the new coef-
ficient matrix A” A is guaranteed to be symmetric, its condition number douhlats

of the original matrixA. This has negative impact on the convergence rate of the opti
mization process and the accuracy of the solution.

Alternatively, in order to solve the problems that have sgmmetric coefficient ma-
trices, the bi-conjugate gradient method (biCG) [56] camybglied. The iterative for-
mulae are similar to those in the CG method, with some additigectors. Initially,

Po = Po = To.
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Tiy1 = Tj + OiP;, (4.17)

Tiv1 = 1r; — 0;Ap;, (4.18)

Fip1 =7 — 0, ATy, (4.19)

oi = p;zp (4.20)

Di+1 = Tig1 + SiDi, (4.21)

Pi+1 = Tit1 + SiDi, (4.22)

and

G = ﬂ;ﬁ“. (4.23)

T’Z- T

Regarding the doubling of the condition number of the coeefficmatrix in the CGNR

method, the biCG method is preferable to the CGNR methodil&ito the case in

the CG method, preconditioning can be applied to the biCGhateto improve its

performance. Practically, the biCG method works well in troa@ases. However, there
does not exist much information about the convergence fatediCG method in the

literature.

In our fitting procedure, one of the critical steps is to sahelinear system of equa-
tions for minimizing the goal function. With the use of theasge data structure (de-
scribed in the previous section) and the conjugate gradietitod, the linear system is

solved efficiently. When implementing the conjugate gratisolver, we take [55] as
[lb—Az|
Tllen

is less thanl0~5. In most cases, the number of iterations by the CG solver ieés
than the number of variables. In order to avoid the CG solkanfrunning infinitely,
the maximum number of iterations is set to the maximun2@f and the double of

reference. The conjugate gradient solver is terminatedlinerelative error

the number of variables. We choose the numbers based onpkeence gained from
experiments. It is a balance between efficiency and acctiioasplving the equations.
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4.7 Smoothing Term

In this section, the smoothing terf) in the goal function is described. The objective
of the smoothing term is to increase the smoothness of tHacguand discourage
self-intersection. Following [20], the smoothing term iguation 3.1 is defined by

1 n
o= SLVIRIVIR), (4.24)

whereP;, i = 1,2,...,n, are the control points and(-) is a discretized version of
Laplacian.V(-) is defined as:

1
VR) = gopy 22U (Pai) ~ U(R), (4.25)
andU (-) is defined as:
1
UR) = Gl > P = P (4.26)

J

wheredeg(P;) is the degree of; and P,;  is the ;™ neighbor ofP;.

It is not trivial to choose an appropriate value for the caedht \ for F. If \ is too
small, the term will have little influence and self-interses may occur. On the other
hand, if\ is too large, the fitting result may not be acceptable sineditting surface
will be too rigid to give small fitting errors. In our experimis, the initial value for
A is set to be).001. As the optimization proceed3,is reduced gradually at different
rates for different target shapes.

4.8 Local Subdivision

When the result of the approximation is not as good as exgeltte to the lack of the
degree of freedom provided by the current control points; centrol points need to
be inserted. Instead of applying the subdivision rule tdraltriangles, we perform
subdivisions only to the triangles that have large errorkis Ts referred to atocal
subdivision
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During the fitting process, the error between the subdimisiorface and the target
shape is measured so that regions with relatively largadittrrors are identified. The
faces in these regions are then subdivided in a 1-to-4 mgseerFigure 4.4). To
avoid undesirable T-vertices, the neighboring triangles split, following the Red-

Green Splitting scheme [66].

Figure 4.4: One triangle is split into four triangles. Ndighing triangles are also split.

After local subdivision, if the fitting errors in most oth@gions are already acceptable,
only the newly added points and their neighboring verticegrated as variables and
optimized. This saves computation time by avoiding solvéngiuch larger linear
system of equations. Since the optimized problem has béardiwhen new control
points are inserted via local subdivisions, our fitting s is indeed a multi-staged
optimization.



Chapter 5
Optimization: Surface Fitting

In this chapter, we first describe some fundamentals in tla dileoptimization [45—
47,56, 58,59, 67-70]. Then, we will relate them with differdistance optimization
methods used in the problem of fitting subdivision surfacasiorganized points.

5.1 Optimization Basics

In an optimization problem, values of the valuables in thaldanction are being
modified during the optimization process such that the goattion is minimized.
In this section, several approaches for tackling optinraproblems are described.
Here, the goal functiorf(x) is assumed to be twice-differentiable.

5.1.1 Necessary and Sufficient Conditions for a Local Minimm

In this section, the necessary and sufficient conditionsaftocal minimum are dis-
cussed. We are dealing with unconstrained optimizatioesnmmg that no additional
constraints are made on the variables.

Necessary Condition:Given a goal functiorf (z), 7 f(z*) must be zero if (z*) is a
local minimum off (x).

Using Taylor’s expansion, we can expafid:) aroundz*:

f(z* +6) = f(a*) + 67 sy f(z* + 09), (5.1)

whered is a modification vector anél € (0, 1).

29
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If vf(z*) # 0, by continuity, there exist8 # 0 such thatyy f(z* + 66) # 0. Then,

there exists a modification vectérsuch thaty” <y f(z* + 65) < 0. In that case,
f(z* +9) — f(z*) < 0and it means thaf(x*) is not a local minimum.

However, it cannot be concluded thAtz*) is a local minimum off (z) if it is just

known that<y f(z*) = 0. 7 f(2*) = 0 is also true wherf (z*) is a local maximum or
a saddle point of ().

Sufficient Condition: Given a goal functionf(z), if 7 f(z*) = 0 and /2 f(z*) is
positive definite, therfi(z*) is a local minimum off (x).

Using Taylor’s expansion again, and one more term is expghnde
1
flx* 4+ 6) = fla*) + 67 7 f(z¥) + §6T V2 f(x* +00)0, (5.2)

whered is a modification vector anél € (0, 1).
Sincevy f(z*) = 0,

f@ +6) — f(z") = %5T 2 f(z" + 65)5. (5.3)

Sincev/% f(z*) is positive definite, and by continuity;® f (z* +60) is positive definite.
Then,§” /2 f(x* + 66)5 > 0,V5. Consequentlyf (z* + &) — f(x*) > 0,V4. In other
words, f(z*) is a local minimum off (z).

5.1.2 The Newton Method

Given a goal functiory(z) and the current value., which is assumed to be near a
local minimum of f (x), the idea of the Newton method is to compute the next iterate,
x4, as a minimizer of the local quadratic mode}(x) (an approximant obtained by
Taylor’'s expansion up to th&" order term) off () aboutz...

mela) = f(0) + 9@ @ = 2 + 50— 2 V[ @ — v (64

Computing the gradient of Equation 5.4, we have:

Vme(x) = 7 f(xe) + V7 f (xe) (x — o). (5.5)

Then,z, is computed as the solution gfm.(z) = 0. So,

Ty = Te — (V2f(x0))_1 v f(ze). (5.6)
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In practice, the inverse of the Hessidrz?f(z.)) ™!, is not computed and the step
r, — x., IS solved using the equation:

VQf(xc)S =—V f(xc) (57)

After that,
Ty =T+ S. (5.8)

If z. is too far away from a local minimizex;?f(x.) can have negative eigenvalues
and is not positive definite. As described in the previousi@ecthe sufficient condi-
tion for a local minimum is that the Hessian needs to be pasdefinite. Therefore,
whenz, is too far away from a local minimizer, the quadratic modeymat have lo-
cal minima and the Newton method may not converge to a loaaihmim. For a value
x. that is close to a local minimum, the Newton method gives tatadconvergence.

5.1.3 The Gauss-Newton Method

In the Newton method, the Hessian, which can be expensivertpaute, is required
for formulating the local quadratic model. In this sectianpther method for tackling
the optimization problem, called the Gauss-Newton mettsodiescribed.

Consider a goal functiofi(z) of a nonlinear least squares problem that is in the form:

flz) = % > ri(@)re(x). (5.9)
k

In the Newton method, the Hessian of the goal function is attegbas follows:

= " vr(a) v (e +Zm 2 ri(z (5.10)
k

In the Guass-Newton method, the second-order tepfn,(z), is discarded and the
Hessian is approximated as follows:

Zwk v ()T (5.11)

The process of the Gauss-Newton method is as the same as$tiatNewton method
with the Hessiany;2f (x.), replaced byy", /ri(z.) 7 ri(ze)”.

For zero residual problems,(x) = 0 and therefore the second-order term in Equa-
tion 5.10 vanishes. In these cases, the Gauss-Newton mesthust identical to the
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Newton method. The motivation for the Gauss-Newton metlsohat the second-
order term might be negligible for small residual problems.

The advantage of the Gauss-Newton method is that the cotignabcost is smaller
when comparing with the Newton method since the secondroed®s are discarded
in the Gauss-Newton method. The Gauss-Newton method waek$owzero or small
residual problems. For zero residual problems, like the tdevimethod, the Gauss-
Newton method exhibits quadratic convergence.

However, the Gauss-Newton method works poorly for largieltes problems because
the Hessian is poorly approximated by simply discardingseond-order terms in
those situations.

5.1.4 The Steepest Descent Method

In the Newton method and the Gauss-Newton method, the Hestihe goal func-
tion or its approximant is required. There exists a methalled the steepest descent
method, in which no computation of the Hessian is neededy @l gradient of the
goal function is involved.

Given a goal functiory (z) and the current value., the next value:, is being found
such thatf(z,) < f(z.). A direction is called a descent direction if the goal fuanti
value f(x) decreases whenis displaced along that direction for a reasonably small
step size. Atr., the steepest descent directionHsy f(z.), which is the negative of
the gradient at.. The direction— </ f(x.) is really a descent direction if. is not a
stationary point (a stationary point refers to a local mimm a local maximum or a
saddle point; and. is a stationary point if and only i f (z.) = 0).

The iterative formula for the steepest descent method isls\s:

Ty =T — N/ f(xc)v (512)

whereq, to be determined by a line search algorithm, is the stepedirey the steepest
descent direction.

Although there is no need to compute or approximate the Hestie steepest descent
method can be recognized as the simplest form of the Newjoa+hethod where the
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iterative formula can be obtained by replacirg f (z..) on the left hand side of Equa-
tion 5.6 byél, wherel is the identity matrix. From another point of view, the Hessi
is approximated by /.

The steepest descent method is simple for implementatibis llunown to give only
linear convergence [71].

5.1.5 The Levenberg-Marquardt Method - a Trust Region Methal

As described in the previous subsections, the three mettioelNewton method, the
Gauss-Newton method and the steepest descent method)ns@vewn advantages
and shortcomings. When the current estimate is close tahioiaimum, the Newton

method gives quadratic convergence. However, computtt@hlessian, which is of-
ten expensive, is required in the Newton method. The Gaesgdh method reduces
the computation time by discarding the second-order tertmsvapproximating the
Hessian. But, the Gauss-Newton method works satisfagtionilzero residual prob-

lems and small residual problems only. The steepest deswthbd does not require
the computation of the Hessian and does converge for lagyéua problems. How-

ever, the steepest descent method only has linear coneergém this subsection, a
regularized version of the Gauss-Newton method, so cdtied.évenberg-Marquardt
Method (the LM method) [47,59, 67, 68, 72], which is supposete robust enough
to ensure global convergence, is described.

The essence of the LM method is that the local model is onktédiwithin a neigh-
borhood that falls within a limited range around the curgintz.. It means that the
step sizes for an iteration is bounded, and this is formally defined by tonstraint

|s|| < Ax. The value ofA\, depends on the degree of the agreement between the
local model and the actual goal function. By using the metbioldagrange multipli-

ers, the original constrained optimization has been toansd into an unconstrained
optimization. The step can be computed by solving the following equation:

O vrex) v k@) + vel)s = — 7 f(xe), (5.13)

wherev.,. is the LM parameter which is adjusted at each iteration.
Comparing the above equation with that of the Newton metBapiétion 5.6), it can
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be noticed that the Hessian of the goal function is approtechas follows:
2 T
Vi () =Y vrka) v k()" + vl (5.14)
k

For all values of., the matrix}", /rx(z) 57 rx(2)” + v.I is positive definite. When

v. is close to zero, the matrix is dominated ®Y, </rx(x) 57 7+ (2)”, which makes the

LM method close to the Gauss-Newton method. Whes a large value, the matrix is
dominated by the identity matrik, which makes the step close to the steepest descent
direction.

During the optimization process, a value, called the gaior&s monitored. The gain
ratio gr is the ratio of the decrease in the actual goal function taldeease predicted
by the local model.

f(xc) - f(xc + S)
L(0) — L(s)
where L is the local quadratic model used to approximate the goattiom. After

some mathematical manipulations, the gain ratitbecomes:

(5.15)

gr =

2f(we) — flae+5)

- sT(ves — 7 f ()
If the gain ratio is small, which means that the current maglalpoor approximation
to the goal functiony. will be increased so that the next step is closer to the ss¢epe
descent direction and the step size is reduced. If the gamisahigh, which means
that the current model is a good approximation to the goattfan, v, will be de-
creased so that the next step is closer to a Gauss-Newtqmwstigh converges much
faster. A particular way to modify the value of according toyr is described in [69].
By monitoring the agreement between the local model and ¢heabhgoal function,
this approach attempts to share the advantages of bothebpest descent method
and the Gauss-Newton method. Comparing with the Gaussawewethod, both the
direction and the step size are modified when the LM methogpdied. In the op-
timization field, the LM method is often implemented as attnggion strategy. The
size of the trust-region depends on the agreement betwessuthent model and the
actual goal function.

(5.16)

The effectiveness of the LM method in fitting subdivisionfages to point clouds is
observed in the experiments in section 6 in the next chapter.
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5.1.6 The Armijo Method - a Line Search Method

For guaranteeing global convergence, line search methg®&§ 67,68, 72] is an al-
ternative approach to trust region method described intéé@qus section.

After a moving direction has been determined by a certaimopation method such
as PDM, SDM or TDM, the step size needs to be decided explisitiperforming a
line search to guarantee convergence rather than justdhateps of fixed length all
the time. The Armijo method provides one way to perform tagkt

Briefly speaking, the following condition, called the sufist condition [47,68], needs
to be satisfied:

fze) — flae + ad) > —aga 7 f(2)"6, (5.17)

whereq is the step size) is the moving direction and, is a parameter smaller than
1.

The step sizer can be set ta initially and is halved until the above sufficient condi-
tion is satisfied.

With the use of the step size control, the stability of tharoation process is better.
Similar to the LM method, extra goal function and gradierdlagations are required
and these increase the computational time. Different fioenLtM method in which

both the direction and the step size are modified, only the S is modified in the
Armijo method.

The effectiveness of the Armijo method in fitting subdivisgurfaces to point clouds
is observed in section 6 in the next chapter.

5.2 Fitting Subdivision Surface to Point Cloud — from
the Viewpoint of Optimization

In this section, we would like to relate the optimizationibagiescribed in the previ-
ous section to various methods for solving the subdivisiofese fitting problem.
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First, some notations are defined for ease of the discusaiditting subdivision sur-
face S is given for fitting the target shagé S is defined by control point®;, i =
1,2,...,n while I" is assumed to be twice differentiabl®(uy, v),k = 1,2,..., N,
which are linear combinations of the control poirits are sample points of and
R(sy, ti,) are their corresponding foot points dnwhereu,, v, andsy, t; are the sur-
face parameters of the sample points and the foot pointectgply. Consider that the
control pointsP; of S are modified with a displacementvec®r= (DY, DI ... DI)T
in each optimization step. Then the sample points on thefieddiurface aré (D; uy, vy,)
and their corresponding foot points brare R(s(k; D), t(k; D)). For clarity, P(D; uy, vg)
and R(s(k; D), t(k; D)) are denoted by’ and R respectively. Sometime$, — R is
denoted by¥;, and1 E] E;, is denoted byf;.

In the subdivision surface fitting probler, needs to be computed such that the goal

function
N

f= %Z(P—R)T(P—R) (5.18)

k=1
is minimized, and subjected to the constraints:

rOR

(P-R)T Do =0 (5.19)
and
7OR
(P-R)T ot =0. (5.20)

Note that the constraints are added since they are the megesmditions for a mini-
mum of f, which can easily be verified by differentiation. Geometllg it means that
the vectorP — R must be normal to the target shapdrat

Since the gradient of}, is required in several methods, we include its computation
here.

o = oP ORT oy ORT I
Volk = 9D VDkaS VDkﬁt k
P .
= g—DEk (due to the constraints 5.19 and 5.20) (5.21)

Depending on the context;p fi. will also be written a%T(P — R).
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5.2.1 PDM -—the Gradient Descent Method

In this subsection, we are going to show that PDM is the gradlescent method. In
PDM, the PD error function is used.

The derivation starts from the quadratic local model (ot®diby expanding up to the
second order term using Taylor’s expansion) at the curreimt .. In the derivation
below, % f(z.) is replaced by the matrifts- 22 .

1
fe(B) + 70 felP) "D + 5D" 7 fi(P)D
1 DT&PT opP
2

9D 9D

= Yppyre _pyr?Pp LppoP" oP

= 2<Pc R.)" (P.— R.)+ (P.— R,) 8DD+2D 5D 9D
1 oP oP

= (Pt 55D = R)' (Pt 55D = Re)
_ %< P(P; D) — R,)"(P(P;D) - R,)

1 :
= §PD error term (Equation 2.2) (5.22)

= fu(P.) +pfi(P.) D+

whereP, are the points for the current iteration afidare the foot points of..

Hence PDM is the gradient descent method. This is a typicanigation approach
for solving a separable nonlinear least squares problemsakigown to have linear
convergence [71].

It is possible to show that PDM converges linearly in anothay:

Given a fitting subdivision surfacg defined byn control pointsP; € E? andm data
pointsR;, € E*, PDM minimizes the goal functiofi(P,2{) with variablesP andi/ in
the Euclidean spacB®**+*™ spanned by? andi{/, whereP = { P;}"_, are the control
points of the fitting subdivision surface abtd= {s, tx };-, are the parameter values
associated th&;,.

PDM has the following two steps that are carried out in iferat (1) For fixed pa-
rameter valuedl, = {sko,tr0} and control points?, = {P,,}, the control points
P, = {P,1} are found such that the quadratic functit(P, ) is minimized. This is



CHAPTER 5. OPTIMIZATION: SURFACE FITTING 38

done by solving a linear system of equations; (2) For therobpbintsP; produced
in step 1, the parameter valuds = {s; 1, ;1 } are found such that the error function
f(P1,U) is minimized. Note thaf (P, i) is not, in general, quadratic i; therefore
one normally computes the foot poins on the target shape for the optimization in
step (2).

The above steps of PDM can also be formulated as followst Wgsneed some no-
tation. The spacé&?"*?™ = {IV}, whereWW = (P,U)", can be decomposed as the
direct sum of subspacg?"’ = {P} of dimensions3n and subspac&?" = {U} of
dimension@m. Lete; € E*"**™ be thej-th unit basis vectorj = 1,2,...,3n+ 2m,
i.e. all components oé; are zero, except that itsth component is 1. Le¥p =
{e1,eq,. .., e3,} bethe basis vectors spannif@’. LetYy = {es,11,€3n12,- - -, €3n42m}
be the basis vectors spannifg”. Let £(Y') be the linear space spannediblnearly
independent vectors = {yi,y»,...,yx}, Where they, € E3""2™ (= 1,2 ... k.
Let (Qo; L(Y)) C E*"+*™ denote thek-dimensional Euclidean subspace obtained
by attaching the linear spacg&(Y) to a pointQ, € E*"*™ ie. (Qo; L(Y)) =
{Qo + YX}, whereX = (z1,79,...,2,)7 € E*. From a starting pointV, =
(Po,Up)™ € E*+2m PDM first computes a minimizéd, = (Py,Uy)" of f(P,Uy)

in the subspacéiVy; £(Yp)). Then PDM computes a minimizé?; = (P;,U;)" of
f(Py,U) in the subspacéiiy; £(Yy)). Then, fromi;, the above two steps are iter-
ated to computél, = (P,,Us)?, and so on.

To study the convergence rate of PDM, it suffices to consi@é ih the neighborhood

of a local minimizer off (P, U); without loss of generality, suppose that the minimizer
is at the origin. It is well known from optimization theoryatwe just need to consider
the Hessiarf? of f(P,U) at the origin. Suppose the minimizer under consideration is
strict, i.e. all eigenvalues off are positive. We consider the application of PDM to
optimizing the quadratic function

fu(P.U) = (P,UYH(P.U)".

The minimizerV, of fy(P,U°) in the subspacéiVy; £L(Yp)) can be found by mini-
mizing the quadratic function

frape = Wo +YpXp|PHWy + YpXp]
with respect taXp € E3". Itis easy to show that

Wy =[I = Yp(YEHYp) 'YpHIW,.
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Similarly, starting fromi¥;, the minimizer offy in the subspacé¥;; Yy;) is given by
Wy = [I = Yp(YEHY ) Y HIW, = MW,

whereM = [I — Yy (YEHY) Yo H|[I — Yp(YEHYp) 'YpH]. Iterating the above
two steps, we obtain
W; =MW, j=01,2...,

whereW; = (P;,U;)" is the result produced at theth iteration of PDM. Hence,
PDM has a linear convergence. Iteratio?y, ;)" = M(P;_1,U;-1)" does not pro-
duce(P;,U;) = 0 in a finite number of steps ifP,, ) is not in the null-space of
M. The actual convergence speed depends on the eigen-strotii as well as the
relationship betwee(iP,, U, ) and the eigenvectors @f.

5.2.2 TDM - the Gauss-Newton Method

In this section, we deal with the Gauss-Newton method. Hih& goal function is
expressed as follows:

fo) = 53 k), (5.23)

wherery(xz) = ||P — R||.

Itis clear thatf,,(P.) = $74(P.)% and

Vol = Tk ND Tk

Vory = Y2Ik, (5.24)
Tk
From Equation 5.21, we have:
P
ey )
vory = 22— -
Tk
0P E
VDrk N 01) Tk
. _ P (P=R)
VPk = 5D P - R||
0P
Vore = 0—DN’ (5.25)

where is the normal vector at the foot point on the target shapetfekt* sample
point.
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Now we move on to show that TDM is the Gauss-Newton method. derevation
starts from the quadratic local model (obtained by expandim to the second order
term using Taylor’'s expansion) at the current patt As discussed in the previous
section,v2 fi(P,) is approximated byypri(P,) 7o 7x(P.)", which isg—gN/\/Tg—gT.
The substitution is done at the second line in the followiag\whtion.

fulP) + Vo PITD + 5T 7 fi(PID

_ vy LprdP o) OPT
1

P __ 1_.0P opPT
_ - o T . . T - T T
= 5P R)T(P. = Ro) + (P = R)" 55D + 5D oo NNT =D

_ 1 o T T . . T Ta_P 1 Ta_P T
= 5(Pe= R)'NNT(P. = Ro) + (Pe = R)'NNTZ5D + 5D o NN

1, oP" ort
= §(P—|— a—DD — RC)TNNT(P+ 0—DD - Rc)
_ %( P(P,;D) — R)"NNT(P(P;; D) — R.)
_ %((P(Pc; D) — R)'N)

1 .
= §TD error term (Equation 2.3) (5.26)

oPT
oD "

whereP, are the points for the current iteratiaR, are the foot points of, and N are
the normal vectors ak..

Hence TDM is the Gauss-Newton method. In surface fitting jerob TDM works
well when the initial positions of the control points ares#gao the optimal positions
and the surface is really capable of fitting the target dath Wweother words, it works
well for zero or small residual problems. However, TDM is stdble around large
curvature regions since the discarded terms in the appentif the Hessian of the
goal function are indeed not negligible.

5.2.3 SDM - the Newton Method

In this subsection, we are going to show that SDM is the Newtethod. In SDM,
the SD error function is used.
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We first compute the derivative @fp f,. (Equation 5.21) and get the Hessian.

> o ort  OR v, OR g \OP Ea?
Vole = (G5 ~ a5 VP oy, Vot ) o5 B g

= (%%T - g—i VD Sk — gR VD tk) 21]; (5.27)
WhereE}f% = 0 sinceP can be expressed as a linear combinatio of
From the constraints 5.19 and 5.20, we have the followingegguations:
0 = Vo ((P R)" gi)
: <>
(%ol o) 2z
and
0 = Vo ((P R)" gi)
= (VDtk a;gT + VDS 882 8? ) (P—R)+
(gg Votk 8812’: Vpsk%) g—i (5.29)

Without loss of generality, suppose thatsy, t;) is a local regular parameterization
of the target surfac& such thathi andgT’i are the unit vectors along the principal

directions of the target surface At Then, we havé?as— o2 = f’alfT S = 0. It follows

that
0 = (VDSk 8;5; + Vot 88;];;) (P—R)+
(g_g sy %fj) - (5.30)
and
0 = (VDtk 8;2’; + VDSk 88;8;) (P—R)+
(g—g - vm%) g—i (5.31)
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From (5.30) and (5.31), we get

8_P8_R_'_ O°R (P—R) VDtk

oD Bsk 8tkask
VDSk = T gt ORT OR (5.32)
9s? (P—R)— dsi, Os,
and OP OR | 0°RT
B T a5 (P—R)/ps
Voty = — 2% v, ("~ ) Vo 4 (5.33)

ORT O
(P—R)— ai%

ot?
Now, we make the following substitutions into (5.32) and8@®: g—i =T, 271: =T,
O = )N, 28 = ko, ||P — R||» = d, wherex;,, # are the principal curvatures at
k k

R, T, T, are the unit tangent vectors along the principal directat® and \V is the
unit normal vector akk. After the substitutions, we have:

g—g'fﬁ-ﬂ(P—R) VD tk

Ot 0sy
- _ 5.34
DSk dlil 1 ( )
and opP 02RT
Tty = — o512+ g0, (P — B) Vo si (5.35)
dlﬁ)g -1
Since%’j: Sk — 0, differentiating with respect te;, yields 8;5; o+ gigifk SE — 0.
Therefore,
O?R"T OR PRT OR T
~ - T T T = 0. 5.36
D510ty D5 ds? ot MmN (5:36)
Similarly,
2 PT 2 PT

8sk8tk8—tk - 8152 8—%
Substitute (5.34) and (5.35) into (5.28) and take (5.36)(arii7) into consideration,

opoPT OPT TR OPqqTOPt

2 _or 1 oD
Volk = 55D T e =1 dry — 1
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= gpl T~ L) G+ dr TR ST
1 — 2
oP . oPT  d 9P _,0PT
_ a2 il i
VN o ta— T o
T
40P pgpOl (5.38)
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wherep; = f,%l,pg = %2 are the radii of curvature along the principal directiongat
Note that the fact thaf; 7," + 7,7;) + NN7T = I has been used.

After computingy/? f;, we move on to prove that SDM is the Newton method. The
derivation starts from the quadratic local model (obtaibg@xpanding up to the sec-
ond order term using Taylor’'s expansion) at the currenttpBin We have used the
fact that(P, — R.)'7T; = (P, — R.)'T; = 0.

fulB) + n el P)TD + DT (7 il B)D

1 T rOPT
= 5(Pc R.)" (P.— R.)+ (P.— R.) 8—DD+

opP oprT d OP opPT

S o p i
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R oD

2

T
(P, — R)"NNT(P,— R,) + (P, — RC)TNNTaiD +
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oP . . oPT 1 d 0P _,0PT
pr Ot p L4 prO 9T g
VN o Pt P op i pp Pt
i _.oP_ _ oPT
DT T, T} ——D
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d
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1 d 2
- P(P;D) - R.)"T;
2d — s |:( ( cy ) Rc) 2}
1 .
= §SD error term (Equation 2.5) (5.39)

whereP, are the points for the current iteration afidare the foot points of..

From the above derivation, we can note that the SDM formutagaadratic approxi-
mant of (5.18). SDM is indeed the Newton method with constgai

5.3 Trajectories of the Iterates for PDM, TDM and SDM

In this section, we study the difference in the trajectonéshe iterates during the
fitting processes in PDM, TDM and SDM. As described in the janes chapter, all

PDM, TDM and SDM follow the idea of separation of variablesaiving the nonlin-

ear least squares problem. Foot point projection is inwblueall the three methods.
But, the iterates for the three methods do not have the sgueeotiytrajectory.

The commonly used method, PDM, which is also called the redterg method, is
known to have linear convergence rate [33]. Figure 5.1 shibwedrajectory of the
iterates for PDM (in 2D case). Itis a zigzag path. The minaniaf the function must
be on the bold curve (which represents the feasible solggtn Vertical movements,
in which only the surface parametersaare modified and the control points are kept
unchanged, correspond to foot point projections. Horialomiovements, in which the
surface parametersare kept unchanged and the control points are optimizedg-cor
spond to the linear least squares problem. Vertical mové&rard horizontal move-
ments are repeated alternatively until the minimizer isthu

Although foot point projection is the common step in PDM, TCavid SDM, both
TDM and SDM have much faster convergence when compared \Dith. Fhese facts

are also reflected in the trajectories of the iterates fosg¢hmethods. Contrast to that
of PDM, the trajectories of TDM and SDM are no longer orthoglarigzag paths.
Figure 5.2 shows the trajectory of the iterates for TDM (in @3e). Again, the min-
imizer of the function must be on the bold curve. Vertical miaents, in which only
the surface parametessare modified and the control points are kept unchanged, cor-
respond to foot point projections. Then, for the step thatesothe linear least squares
problem, the movement is along the tangent line formed aitéhate. TDM uses the
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Minimum

" P
R

Figure 5.1: PDM: Trajectory of the iterates in the optimiaatspace (2D case)
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movement on the tangent line to approximate the movemeriteadlution curve. In
this step, both the surface paramet@nd the control point® are modified. Vertical
movements and movements along the tangent lines are rdpesdtethe minimizer is
found.

Minimum

P
R
Figure 5.2: TDM: Trajectory of the iterates in the optimipatspace (2D case)

Similarly, in SDM, there is a step for foot point projectiavhich is followed by a step
for solving a linear least square problem. The trajectoryhefiterates for SDM in
2D case is similar to that shown in Figure 5.2. Figure 5.3 g&eD illustration. In
the step for foot point projection, only the surface pararstandt are modified and
the control points are kept unchanged. In the figure, thewefllane is the tangent
plane formed at the foot point. Then, for the step that solliedinear least squares
problem, the movement is made along the tangent plane. S@slthe movement on
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the tangent plane to approximate the movement on the solstidace. The actual

movement on the tangent plane is guided by SDM’s approxonat the Hessian.

During this step, the variabld3, s andt are modified. Like TDM, vertical movements
and movements on the tangent planes are repeated until tivizer is found.

Figure 5.3: SDM: Trajectory of the iterates in the optimiaatspace

In conclusion, although PDM, TDM and SDM share similar picadtprocedures, the
trajectories of the iterates in the optimization space radeed different in nature. The
zigzag path for PDM and the non-zigzag paths for TDM and SD&é gome insights
about the difference in convergence rates of these methods.



Chapter 6
Experimental Results and Discussions

In this chapter, we present experimental results for comgahe convergence behav-
iors of different optimization methods. The time and ertatistics for the examples
are also given. All experiments are conducted on a PC witi Xe¢on2.8 GHz CPU
and2.00 GB RAM. The machine that we use is a relatively high-end orteshould
be affordable and reasonable. Our program can handle crrdata models such as
Buddha (6.64, which consists 843652 points) using this machine.

6.1 Behaviors of Different Types of Optimization: PDM,
TDM, SDM and their Variants

In this section, some experiments are performed to compareanvergence behaviors
and stabilities of different optimization methods. Besidihe effectiveness of a trust
region strategy and a line search strategy is demonstratdtbugh the target shapes
used in the experiments in this section are relatively stpple observations made are
expected to be valid for more complex shapes.

6.1.1 Convergence Behaviors of PDM, TDM and SDM

Experiment Al (Refer to Figures 6.1, 6.2)

This experiment investigates the convergence behaviokddd, SDM and TDM. A
sphere, of which the radius@s5, is used as a target data in this experiment. An initial
mesh, which containS0 control points, is obtained by subdividinglax 1 x 1 cube
using Loop’s scheme. No smoothing term is used. Figure @Wsithe target sphere,
the initial mesh, the optimized mesh and also the optimizddlizision surface. Fig-

48
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ure 6.2 shows the error curves for PDM, SDM and TDM.

Figure 6.1: Left: Target sphere and initial mesh (red ling&&jldle: Optimized mesh
obtained by SDM (meshes obtained by PDM and TDM are simildrtharefore are
not included here); Right: Optimized subdivision surfabtathed by SDM
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Figure 6.2: Error curves for experimeAt

Experiment A2 (Refer to Figures 6.3, 6.4)
In this experiment, the target data used is an ellipsoid a€lwthe radii are).25, 0.5
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and 1.0. The initial mesh i9.5 x 1.0 x 2.0 and consists ot4 control points. No
smoothing term is used. Compared with experiméf the target shape does not
have uniform curvatures. Figure 6.3 shows the target eligyshe initial mesh, the
optimized mesh and also the optimized subdivision surf&ogure 6.4 shows the er-
ror curves for PDM, SDM and TDM.

Figure 6.3: Left: Target ellipsoid and initial Mesh (redds); Middle: Optimized
mesh obtained by SDM (meshes obtained by PDM and TDM areasiianild therefore
are not included here); Right: Optimized subdivision stefabtained by SDM
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Figure 6.4: Error curves for experimeAR
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Observation: TDM and SDM converge faster than PDM with TDM and SDM have
similar convergence rates. Furthermore, different locahimums are obtained in
these methods.

From experimentsi1 and A2, it is observed that both TDM and SDM converge much
faster than PDM while TDM and SDM have similar performangeexperimentAl,
PDM takes67 iterations {.668 s) to obtain anv,.,,,, smaller thar).0005 while SDM
and TDM just take3 iterations (.251 s) andl1 iteration (.06 S) respectively. In ex-
perimentA2, PDM takes50 iterations ().791 s) to obtain an¥,.,,, smaller thar0.002
while SDM and TDM just take iterations (.020 s) andl iteration (.010 S) respec-
tively. These experimental results can be predicted anthievqul by the theoretical
facts mentioned in the previous chapter that PDM is a gradiescent method, TDM
is the Gauss-Newton method and SDM is the Newton method.

6.1.2 Convergence Behaviors with Improper Initial Meshes

Experiment B1 (Refer to Figures 6.5, 6.6, 6.7, 6.8)

This experiment investigates the convergence behavioBDdl, SDM and TDM
when the initial mesh is not properly aligned with the tagjepe. A sphere, of which
the radius i9).5, is used as a target data whil8.8 x 0.8 x 0.8 cube is used as an initial
mesh. The initial mesh hasl control points. Figure 6.5 shows the target shape and
the initial mesh. Figure 6.6 shows the meshes after the finsttion for PDM, SDM
and TDM. Figure 6.7 shows the optimized meshes for SDM and Td3Mell as the
meshes for PDM after00 and 1000 iterations. Figure 6.8 shows the error curves for
PDM, SDM and TDM.

Experiment B2 (Refer to Figures 6.9, 6.10, 6.11, 6.12)

This experiment investigates the convergence behavioBDdl, SDM and TDM
when the initial mesh is not properly aligned with the tagfgpe and also the control
points are not evenly distributed. A sphere, of which thausds 0.5, is used as a
target data while a cone shape mesh, which consist$ obntrol points, is used as an
initial mesh. Figure 6.9 shows the target shape and thalniesh. Figure 6.10 shows
the meshes after the first iteration for PDM, SDM and TDM. Fgy6.11 shows the
optimized meshes for SDM and TDM as well as the meshes for P B0 and
1000 iterations. Figure 6.12 shows the error curves for PDM, SDid @DM.
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Figure 6.7: Left: Optimized mesh by SDM (the mesh obtained b is similar and
is therefore not included here); Middle: Mesh for PDM aft@0 iterations; Right:
Mesh for PDM after1 000 iterations
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Figure 6.8: Error curves for experimeRAt

Figure 6.9: Target sphere and initial mesh (red lines)
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Figure 6.10: Mesh after the iteration. Left: PDM; Middle: SDM; Right: TDM

Figure 6.11: Left: Optimized mesh obtained by SDM (the mdsiaioed by TDM is
similar and is therefore not included here); Middle: MestHBDM after100 iterations;
Right: Mesh for PDM aftei 000 iterations
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Figure 6.12: Error curves for experimeBf

Experiment B3 (Refer to Figures 6.13, 6.14)

This experiment investigates the convergence behavioRDdl, SDM and TDM
when the initial mesh is far away from the target shape anadl this control points
are not evenly distributed. A sphere, of which the radiusisis used as a target data
while an initial mesH x 1 x 3, which consists of4 control points, is used. Figure 6.13
shows the target sphere, the initial mesh, the optimizechraed also the optimized
subdivision surface. Figure 6.14 shows the error curveBiavl, SDM and TDM.

Experiment B4 (Refer to Figures 6.15, 6.16)

This experiment investigates the convergence behavioRDdl, SDM and TDM
when the initial mesh is not properly aligned with the tagfgpe and also the control
points are not evenly distributed with respect to the tardedisc, of which the radii
arel, 1 and0.1, is used as a target data while an initial mesh , which cansist4
control points, is used. The initial mesh is placed orth@djgrio the target data. Fig-
ure 6.15 shows the target ellipsoid, the initial mesh, thingped mesh and also the
optimized subdivision surface. Figure 6.16 shows the ewores for PDM, SDM and
TDM.
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Figure 6.13: Left: Target sphere and initial mesh (red linkkddle: Optimized mesh
obtained by SDM (meshes obtained by PDM and TDM are simildrtharefore are
not included here); Right: Optimized subdivision surfabtatned by SDM
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Figure 6.14: Error curves for experimehs
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Figure 6.15: Top Left: Target disc and initial mesh (red $indop Right: Optimized
mesh obtained by PDM; Bottom Left: Optimized mesh obtaingdSBM; Bottom
Right: Optimized subdivision surface obtained by SDM



CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSIONS 58

10
PDM
SDM
TDM
0
10
10"
S A
L
10°¢ ;
107 /\/\A/\/W\/W
1074 I I I I
0 20 40 60 80 100

Iteration

Figure 6.16: Error curves for experimehBtt

Observation: SDM converges successfully to the target shapes from irapiojial
meshes while PDM converges slowly or even fails to convergeme cases. TDM
has the stability problem in some cases.

In experimentB1, it can be noticed that SDM and TDM have an obvious advantage
over PDM that the control points are able to have large digprents so that the poor
initial meshes do not hinder the fitting subdivision surfroen converging to the tar-
get shape. In experime#t2, it is observed that both SDM and TDM are capable of
re-distributing the control points efficiently while PDMssicked by the inappropriate
initial distribution of the control points. In experimemt3, the initial mesh is inten-
tionally made to be far away from the target along one dioectSDM has the best per-
formance among the three methods while TDM is unstable abeélgenning although

it still outperforms PDM. PDM take86 iterations (.651 s) to have ant,,,, smaller
than0.0015 while SDM and TDMS iterations (.130 s) and17 iterations (.270 s) to
achieve that. In experimerit4, PDM cannot move with large enough displacements
to overcome the poor initial configuration. TDM is unstableieth can be explained
by the fact that TDM is the Gauss-Newton method and the discktermy(z) /% r ()

in the Hessian becomes relatively significant whén) is large.
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6.1.3 Convergence Behaviors with Far-away Initial Meshes

Experiment C'1 (Refer to Figures 6.17, 6.18)

This experiment investigates the convergence behavioRDd, SDM and TDM
when the initial mesh is quite far away from the target shape.ellipsoid is used
as a target data in this experiment. The radii@ps, 0.5 and1.0. An initial mesh of a
4.0 x 4.0 x 4.0 cube, which consists d# control points, is used. No smoothing term
is used. Figure 6.17 shows the target ellipsoid, the imtieth and also the optimized
subdivision surface. Figure 6.18 shows the error curveRv, SDM and TDM.

Figure 6.17: Left: Target ellipsoid and initial mesh (redes); Middle: Optimized
mesh obtained by SDM; Right: Optimized subdivision surfab&ined by SDM

Observation: TDM does not have a stable performance when the initial meéri
away. SDM outperforms PDM.

From experimen'1, it can be observed that SDM converges much faster than PDM
while TDM does not work in this example. PDM has &p,,, larger thar).002 after

500 iterations 9.160 s) while SDM just take$ iterations (.071 s) to obtain ant, .,
smaller thard).002. Similar to experimeni34, TDM does not work well for a far-away
initial mesh because of the large initial residue, whichrisdicted by the theory de-
scribed in the previous chapter.

6.1.4 Convergence Behaviors for Targets with Large Curvatte
Regions

Experiment D1 (Refer to Figures 6.19, 6.20)
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Figure 6.18: Error curves for experimefit

The objective of this experiment is to observe the fittingsasébrs of PDM, SDM and
TDM when a target shape containing large curvature regi®ns be fitted. Here, an
ellipsoid having higher curvatures is used as the target ddte radii aré®.25, 0.5 and
4.0. The initial mesh i9.5 x 1.0 x 8.0. The number of control points in the initial
mesh isl4. No smoothing term is used. Figure 6.19 shows the targetseild, the ini-
tial mesh, the optimized mesh and also the optimized sudidivsurface. Figure 6.20
shows the error curves for PDM, SDM and TDM.

Figure 6.19: Left: Target ellipsoid and initial mesh (redes); Middle: Optimized
mesh obtained by SDM; Right: Optimized subdivision surfab&ined by SDM

Experiment D2 (Refer to Figures 6.21, 6.22)
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Figure 6.20: Error curves for experimebt

In this experiment, another ellipsoid is used as the targaps. The radii aré.125,
0.25 and4.0. The initial mesh i9).25 x 0.5 x 8. The number of control points in the
initial mesh is14. No smoothing term is used. Figure 6.21 shows the targgiseili,
the initial mesh, the optimized mesh and also the optimizddlizision surface. Fig-
ure 6.22 shows the error curves for PDM, SDM and TDM.

Figure 6.21: Left: Target ellipsoid and initial mesh (redds); Middle: Optimized
mesh by SDM; Right: Optimized subdivision surface by SDM

Experiment D3 (Refer to Figures 6.23, 6.24)

In this experiment, a disc-shaped ellipsoid is used as tigettahape. The radii are
1.0, 1.0 and0.1. The initial mesh i.0 x 2.0 x 0.2. The number of control points

in the initial mesh isl4. No smoothing term is used. Figure 6.23 shows the target
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Figure 6.22: Error curves for experimeb®

disc, the initial mesh, the optimized mesh and also the opéidhsubdivision surface.
Figure 6.24 shows the error curves for PDM, SDM and TDM.

Figure 6.23: Left: Target disc and initial mesh (red linéd)ddle: Optimized mesh
by SDM; Right: Optimized subdivision surface by SDM

Experiment D4 (Refer to Figures 6.25, 6.26)
In this experiment, the target shape, a disc-shaped allipisas the same as that used
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Figure 6.24: Error curves for experimeb

in experimentD3. The radii arel.0, 1.0 and0.1. The initial mesh ist.0 x 4.0 x 0.4.
The number of control points in the initial meshli$. No smoothing term is used.
Figure 6.25 shows the target disc, the initial mesh, thenupéd mesh and also the
optimized subdivision surface. Figure 6.26 shows the ewores for PDM, SDM and
TDM.

Figure 6.25: Left: Target disc and initial mesh (red linéd)ddle: Optimized mesh
by SDM; Right: Optimized subdivision surface by SDM
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Figure 6.26: Error curves for experimeht

Observation: PDM has slow convergence. TDM is unstable when the initiame
far away. SDM works well in these cases.

Itis observed that both TDM and SDM converge much faster B2NI. In experiment
D1, PDM takes282 iterations (.53 s) to obtain ank,,,, smaller than0.005 while
SDM and TDM just take iterations (.05 s) andl iteration (.03 s) respectively. In
experimentD2, PDM takes130 iterations £.113 s) to obtain an¥,,,, smaller than
0.005 while SDM and TDM just take2 iterations (.04 s) and1 iteration (.02 s)
respectively. In both experimenisl and D2, the fitting errors obtained by TDM are
around20% larger than those obtained by SDM. This can be explaineddfaitt that
TDM is the Gauss-Newton method and the discarded t€rms/2 r(z) in the Hessian
becomes relatively significant whep?r(z) is large. In experiment®3 and D4, a
disc-shaped ellipsoid is used as the target, in which langeature regions appear long
the edge of the disc. In experimeht, the initial mesh is close to the target, TDM
can still work well. The discarded tern{x) 5/ r(z) in the Hessian for the Gauss-
Newton method is insignificant whetiz) is small. PDM takes8 iterations (.552 to
obtain anE,.,,,, smaller thar).001 while SDM and TDM just take iterations (.091

s) and3 iterations (.05 s) respectively. In experimeri?4, an initial mesh, which is
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further away from the target when compared with that useapeementD3, is used.
It is observed that SDM converges faster than PDM (PDM t&Regerations (.362
S) to obtain ant,,,,, smaller than).001 while SDM takes12 iterations (.221 s) to
achieve that) while TDM is not stable in this experiment heseaof the large initial
residue. The behaviors in the above experiments can beiegglay the fact that
TDM is the Gauss-Newton method. As discussed in the prewdbapter, the Gauss-
Newton method works poorly in large residual problems bseanf the ignorance of
curvature-related second order terms in the Hessian.

6.1.5 Convergence Behaviors for Optimizations with Smooihg
Terms

Experiment E'1 (Refer to Figure 6.27)

In the previous experiment$1-D4, no smoothing term is included in the goal func-
tions. In this experiment, a smoothing term is added. A spléradii(.5, that has
been used in experimeritl, is used. The coefficient for the smoothing ternd isl.
The initial mesh used, which had control points, is identical to the one used in ex-
perimentAl. Figure 6.27 shows the error curves for PDM, SDM and TDM.

Experiment E2 (Refer to Figure 6.28)

In this experiment, the same target and the initial mesh sed as those in the previ-
ous experiment. The coefficient for the smoothing term.i®1. Figure 6.28 shows
the error curves for PDM, SDM and TDM.

Experiment £'3 (Refer to Figure 6.29)

In this experiment, the target data used is a ball joint wisckhown in Figure 6.59.
If no smoothing term is included, self-intersections caourcHere, a smoothing term
is added to avoid self-intersections on the subdivisiofeser The coefficient for the
smoothing term i$.01. The number of control points in the initial meshli&s. Fig-
ure 6.29 shows the error curves for PDM, SDM and TDM.

Experiment E4 (Refer to Figure 6.30)

In this experiment, the target data and the initial meshdeatical to those in exper-
iment £3. But, a smaller coefficient).001, is used for the smoothing term in this
experiment. Figure 6.30 shows the error curves for PDM, SDMEDM.
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Observation: Like the experiments with no smoothing terms used, SDM amd TD
outperform PDM when smoothing terms are added to the goatims.

In experimentdy1 andE2, itis observed that SDM and TDM still converge faster than
PDM although the fitting errors obtained are larger than #ses when no smoothing
term is added in experimentl. In experimentt1, PDM takes20 iterations £.013
S) to obtain an¥,.,,,, smaller thar0.0006 while SDM and TDM just take iterations
(0.190 s) and?2 iterations (.180 s) respectively. In experimerf2, PDM takes15
iterations {.463 s) to obtain ant,,,, smaller thar0.0005 while SDM and TDM just
take3 iterations (.320 s) andl iteration (0.090 s) respectively. In experiments3 and
E4, as in the previous experiments, TDM and SDM converge mustiefdhan PDM.
In experimentE’3, PDM takes2 iterations £5.065 S) to obtain ank,,,,, smaller than
0.0055 while SDM and TDM just takel iterations {.683 s) and3 iterations {.282
S) respectively. In experiment4, PDM takesl7 iterations (.739 s) to obtain an
E,,.. smaller thar).0045 while SDM and TDM just take iterations (.880 s) and
2 iterations ().881 s) respectively. It is observed that small errors are predwehen
a smaller coefficient for the smoothing term is used for PDMrand SDM. The
reason is that the distance functions play a more importdetwhen a smaller coef-
ficient for the smoothing term is used. These experimenta shat the inclusion of
the smoothing term will not change the general convergeebewor of PDM, TDM
and SDM. The insight from these experiments is importardesthe smoothing term
is often needed for avoiding self-intersections, espluaiiring the early stages of the
fitting process.

6.1.6 Convergence Behaviors for Multi-Staged Optimizatios

Experiment F'1 (Refer to Figure 6.31)

In experimentsAl - F4, the optimizations are recognized as single-staged ogdimi
tions. The numbers of control points (in effect the numbédrganiables in the opti-
mization problems) as well as the coefficients for the smiagtterms are kept con-
stant throughout the whole process. In this experiment, li4staged optimization is
demonstrated. The target data used is a ball joint whichaw/shn Figure 6.59. The
coefficient for the smoothing term i501. The initial number of control points in the
initial mesh is128 and new control points are inserted at large error regiomath-
out the process. The final numbers of control points for PDBMMSand TDM are
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217, 172 and184 respectively. Figure 6.31 shows the error curves for PDMYISIdd
TDM.
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Figure 6.31: Error curves for experimefit

Experiment F'2 (Refer to Figure 6.32)

In this experiment, the target data used is as the same asn¢hthat used in exper-
iment F'1. It is a ball joint which is shown in Figure 6.59. The numbercohtrol
points in the initial mesh i$28. Different from experiment’'1, the number of control
points is fixed throughout this experiment while the coediitifor the smoothing term
is decreased gradually. The coefficient for the smoothing teas an initial value of
0.01, and it is set ta).001 and0.0001 at the20** and the40*" iterations respectively.
Figure 6.32 shows the error curves for PDM, SDM and TDM.

Experiment F'3 (Refer to Figure 6.33)

In this experiment, the target data used is as the same as¢hhat used in experi-
mentsF'1 and F2. It is a ball joint which is shown in Figure 6.59. The initiahmber
of control points in the initial mesh 28 and the initial value of the coefficient for the
smoothing term i$).01. Throughout this experiment, new control points are iregert
around the large error regions and the coefficient for theathiiog term is decreased.
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Figure 6.32: Error curves for experimefip

The final numbers of control points for PDM, SDM and TDM af&, 199 and 151
respectively while the coefficient for the smoothing termses to0.001 and0.0001 at
the 20" and the40" iterations respectively. Figure 6.33 shows the error cifoe
PDM, SDM and TDM.

Observation: Compared with those of the single-staged optimizationallenfitting
errors are obtained using the multi-staged optimizationth whe increasing degree
of freedom (due to the insertion of control points) or therdasing coefficient of the
smoothing term. Within each stage of the multi-staged opditions, same conver-
gence behaviors of PDM, TDM and SDM are observed as thoseisitiyled-staged
cases.

From the experiments, it is observed that SDM and TDM corevéagter than PDM.

SDM and TDM also yield smaller fitting error than PDM. Thesgulés are significant

and mean that SDM and TDM can work properly in practical sg#isince the pro-
cess of fitting subdivision surfaces to point clouds of ca@r@hapes often involves
multi-staged optimizations rather than single-stagethupétions.
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Figure 6.33: Error curves for experimehs

6.1.7 Convergence Behaviors for TDM with Different Smoothng
Term Coefficients

Experiment G1 (Refer to Figure 6.34)

From the previous experiments, we know that TDM is not stablgome cases. In
this experiment, we would like to observe the effect of th@asthing term of different
coefficients on TDM. Figure 6.34 shows the error curves fliedént coefficients for
the smoothing term for TDM in experimeatl.

Experiment G2 (Refer to Figure 6.35)

In this experiment, we would like to observe the effect ofgsheothing term of differ-
ent coefficients on TDM. Figure 6.35 shows the error curvesliiberent coefficients
for the smoothing term for TDM in experimet4.

Experiment G3 (Refer to Figure 6.36)

In this experiment, we would like to observe the effect ofsheothing term of differ-
ent coefficients on TDM. Figure 6.36 shows the error curvesliiberent coefficients
for the smoothing term for TDM in experiment4.
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Figure 6.36: Error curves for TDM in experime@s

From Figures 6.34, 6.35 and 6.36, it can be observed thaticeslues of smoothing
term coefficient can stabilize TDM. However, it is not trivia determine the appro-
priate value. If the coefficient is too large, the error otea will be too large. If the

coefficient is too small, TDM cannot be stabilized. In thetrs®ction, another method
for stabilizing TDM is examined.

6.1.8 Convergence Behaviors for TDM with the LM Method

In this section, experiments are carried out to investitfageeffect of a trust region
method, the LM method, on the convergence behaviors of TDi.i@plementation
of the LM method is based on the description in [69]. In thipiementation, three
parametersr, ¢; ande,, need to be determined. The parametes related tov. (a
parameter that is described in the section describing themid¥hod in the previous
chapter) by the fact that. having an initial value- x maz{a;; }, wherea,; is the diag-
onal elements in the coefficient matrix. is related to a stopping criterion, according
to which the inner iterations will be terminated when the norm for the gradient
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vector is smaller than,. ¢, is related to another stopping criterion, according to Wwhic
the change of the solution is small. In particul@)| < e(||z| + €2), wherex is the
current solution and is the change of the solution. It is not a trivial task to destiere

the values of the parameters that can perform well for aksagearnt from experi-
ence, we set the parametets; ande, to 1078, 10-% and10~8 respectively.

Inside one inner iteration, several tasks need to be dorey iflelude:(i) obtaining a
step by solving a linear system using the current vajui¢ii) checking the gain ratio;
(77i) checking stopping criteria ar(dv) updating the parameters according to the gain
ratio.

Experiment H1 (Refer to Figure 6.37)

In this experiment, the target data (an ellipsoid of whidhriddii ared.25, 0.5 and1.0)
and the initial mesh (has the dimensians x 1.0 x 2.0 and consists ot4 control
points) are identical to those in experimetit. (See Figure 6.3.) No smoothing term
is used. Figure 6.37 shows the error curves for TDM and TDMhwie LM method
applied. The zoom-in version (along the y-axis) in Figurggagives a better illustra-
tion of the effect of the LM method. Figure 6.44(a) shows ttrerecurve of the inner
iterations for the first iteration of the LM method. TDMLM tekl iteration (.551 S)

to have ank,.,,,, smaller thar).002.

Experiment H2 (Refer to Figure 6.39)

In this experiment, the target data (an ellipsoid of whiahriédii are).25, 0.5 and1.0)
and the initial mesh (4.0 x 4.0 x 4.0 cube, which consists af4 control points) are
identical to those in experimentl. (See Figure 6.17.) No smoothing term is used.
Figure 6.39 shows the error curves for TDM and TDM with the LMthod applied.
Figure 6.44(b) shows the error curve of the inner iteratfonshe first iteration of the
LM method. While TDM does not work well for this setup (as simon experiment
C1), TDMLM takes]1 iteration (1.593 s) to have art,.,,,, smaller thar).002.

Experiment H3 (Refer to Figure 6.40)

In this experiment, an ellipsoid containing large curvasughaving the radii.25, 0.5
and4), which has been used in experimént, is used as the target. The initial mesh
used has the dimensiofi$ x 1.0 x 8.0 and consists of4 control points. (See Fig-
ure 6.19.) No smoothing term is used. Figure 6.40 shows ttoe earves for TDM
and TDM with the LM method applied. Figure 6.44(c) shows therecurve of the
inner iterations for the first iteration of the LM method. TIM takes1 iteration
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Figure 6.38: Error curves for experimefitl (the zoom-in (along the y-axis) version)
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(1.221 s) to have ar¥,.,,,, smaller thard.005.

Experiment H4 (Refer to Figure 6.41)

In this experiment, another ellipsoid containing largevetures (having the radii
0.125, 0.25 and4), which has been used in experimdn?, is used as the target. The
initial mesh used has the dimensidng5 x 0.5 x 8 and consists of4 control points.
(See Figure 6.21.) No smoothing term is used. Figure 6.4Wslive error curves for
TDM and TDM with the LM method applied. Figure 6.44(d) shows error curve of
the inner iterations for the first iteration of the LM meth@dMLM takes 1 iteration
(0.511 s) to have art,,,,, smaller thar).005.

Experiment H5 (Refer to Figure 6.42)

In this experiment, a disc-shaped ellipsoid (having thei rad, 1.0 and0.1), which

has been used in experimeBt, is used as the target. The initial mesh used has the
dimension2.0 x 2.0 x 0.2 and consists of4 control points. The initial mesh is put

in an orientation that is orthogonal to the target disc. (Sgare 6.15.) No smoothing
term is used. Figure 6.42 shows the error curves for TDM an§1Mdth the LM
method applied. Figure 6.44(e) shows the error curve ofriheriiterations for the
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first iteration of the LM method. TDMLM takes iteration (1.662 s) to have arf,
smaller thar0.001.
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Figure 6.42: Error curves for experimelb

Experiment H6 (Refer to Figure 6.43)

In this experiment, a disc-shaped ellipsoid (having thei rad, 1.0 and0.1), which

has been used in experiment, is used as the target. The initial mesh used has the
dimensionst.0 x 4.0 x 0.4 and consists of4 control points. (See Figure 6.25.) No
smoothing term is used. Figure 6.43 shows the error curwveEDd and TDM with

the LM method applied. Figure 6.44(f) shows the error curivthe inner iterations

for the first iteration of the LM method. TDMLM takdsiteration ().962 s) to have an
E,..s smaller tharp.001.

Observation: In the occasions which TDM works poorly, the LM method camiced
the fitting error and improve the stability.

In experimentH 1, it can be observed that the LM method improves the stalolity
TDM. In experiments{ 2, H5 and H6, the fitting errors fluctuate in a large range and
fail to converge when the pure TDM is applied. But, when the inéthod is applied,
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Figure 6.43: Error curves for experimelt

a smaller and stable fitting error is obtained. In other wowdth the use of the LM
method, TDM can tackle the cases which cannot be handledigielyy the pure TDM.
The reason is that the LM method avoids using the poor apmp&tion (in TDM, the
Gauss-Newton method) of the Hessian. More details aboutMhenethod can be
found in the previous chapter. In experime&i8 and H4, like the pure TDM, the
TDM with the LM method also works well.

Concerning the computational efficiency, longer time isvitably needed when the
LM method is applied. But, the amount of time required by ti imethod (with
TDM) is usually less than that required by PDM method, with fibrmer method giv-
ing smaller fitting errors.

6.1.9 Convergence Behaviors for SDM with the LM Method

In this section, experiments are carried out to investifaampact of a trust region
method on the convergence behaviors of SDM. The trust regethod used is similar
to the LM method that is applied to the Gauss-Newton methadlddmprevious section.
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Figure 6.44: Error curves for the inner iterations of the fteyation in the LM method.
(a): ExperimentH1 (14 inner iterations); (b): Experimerff2 (41 inner iterations);
(c): ExperimentHd 3 (31 inner iterations); (d): Experimer#{4 (13 inner iterations); (e)
ExperimentH’5 (42 inner iterations); (f) Experimerf/ 6 (27 inner iterations)
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Specifically, a termv.[ is added to the approximation of the Hessian. From now on,
we refer this method as SDM with the use of the LM method akifnthe classical LM
method is originally designed to work with the Gauss-Newtwthod. The parame-
ters for the LM method are set to the same values that haveussehin the previous
section.

Experiment /1 (Refer to Figure 6.45)

In this experiment, the target data (an ellipsoid of whiahriédii are).25, 0.5 and1.0)
and the initial mesh (has the dimensians x 1.0 x 2.0 and consists ot4 control
points) are identical to those in experimetit. (See Figure 6.3.) No smoothing term
is used. Figure 6.45 shows the error curves for SDM and SDM the LM method
applied. The zoom-in version (along the y-axis) in Figu#gagives a better illustra-
tion of the effect of the LM method. Figure 6.52(a) shows ttrerecurve of the inner
iterations for the first iteration of the LM method. SDMLM & iteration (1.011 S)

to have ank,,,,, smaller thar).002.
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Figure 6.45: Error curves for experimefit

Experiment /2 (Refer to Figure 6.47)
In this experiment, the target data (an ellipsoid of whidhriddii ared.25, 0.5 and1.0)
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Figure 6.46: Error curves for experimefit (the zoom-in (along the y-axis) version)

and the initial mesh (4.0 x 4.0 x 4.0 cube, which consists af4 control points) are
identical to those in experimenitl. (See Figure 6.17.) No smoothing term is used.
Figure 6.47 shows the error curves for SDM and SDM with the Liktimod applied.
Figure 6.52(b) shows the error curve of the inner iteratfonshe first iteration of the
LM method. SDMLM taked iteration (1.042 s) to have ar¥,,,,, smaller thard.002.

Experiment /3 (Refer to Figure 6.48)

In this experiment, an ellipsoid containing large curvasughaving the radii.25, 0.5
and4), which has been used in experimént, is used as the target. The initial mesh
used has the dimensiofi$ x 1.0 x 8.0 and consists of4 control points. (See Fig-
ure 6.19.) No smoothing term is used. Figure 6.48 shows the eurves for SDM and
SDM with the LM method applied. Figure 6.52(c) shows the ecurve of the inner
iterations for the first iteration of the LM method. SDMLM &Kl iteration (1.321 S)

to have ant,,,,, smaller thar9.005.

Experiment /4 (Refer to Figure 6.49)
In this experiment, another ellipsoid containing largevatures (having the radii
0.125, 0.25 and4), which has been used in experimdn?, is used as the target. The
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initial mesh used has the dimensidng5 x 0.5 x 8 and consists of4 control points.
(See Figure 6.21.) No smoothing term is used. Figure 6.4@sliwe error curves for
SDM and SDM with the LM method applied. Figure 6.52(d) shoeserror curve of
the inner iterations for the first iteration of the LM meth@&@DMLM takes1 iteration
(0.711 s) to have art,,,,, smaller thar).005.
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Figure 6.49: Error curves for experimeht

Experiment 5 (Refer to Figure 6.50)

In this experiment, a disc-shaped ellipsoid (having thei rad, 1.0 and0.1), which

has been used in experimeBt, is used as the target. The initial mesh used has
the dimensiong2.0 x 2.0 x 0.2 and consists of4 control points. (See Figure 6.15.)
The initial mesh is placed in an orientation that is orthagdao the target shape. No
smoothing term is used. Figure 6.50 shows the error curwveSBPd/1 and SDM with

the LM method applied. Figure 6.52(e) shows the error cufw@® inner iterations
for the first iteration of the LM method. SDMLM takédteration £.231 s) to have an
E,..s smaller tharp.001.

Experiment /6 (Refer to Figure 6.51)
In this experiment, a disc-shaped ellipsoid (having thei rad, 1.0 and0.1), which



CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSIONS 85

SDM
= = =SDMLM

Error

0 20 40 60 80 100
Iteration

Figure 6.50: Error curves for experimefit

has been used in experiment, is used as the target. The initial mesh used has the
dimensionst.0 x 4.0 x 0.4 and consists of4 control points. (See Figure 6.25.) No
smoothing term is used. Figure 6.51 shows the error curwveSBPd/1 and SDM with

the LM method applied. Figure 6.52(f) shows the error curivthe inner iterations

for the first iteration of the LM method. SDMLM takédteration (1.743 s) to have an
E,..s smaller tharp.001.

Observation: The LM method improves the stability of SDM, but the effenbtsas
obvious as that in TDM.

From the experimentl, it can be observed that the LM method improves the stability
of SDM. With the use of the LM method, different local minimancbe obtained. For
example, in experiments3, 14, I5 and 6, the fitting errors obtained by pure SDM
are smaller although the stability has been slightly imptbwith the use of the LM
method.

Similar to the cases in TDM, longer computational time isuiegd when the LM
method is applied. The time required by SDMLM is comparablthe time required
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by TDMLM. Since SDM is more stable than TDM, the effect of thd method is less
obvious.

6.1.10 Convergence Behaviors for Optimizations with the Amijo
Method

Trust region method, which has been studied in the previeasas, is one way for
ensuring the global convergence of an optimization metBaelp size control method
is another approach for achieving global convergence @85, 68, 72]. In this sec-
tion, the effectiveness of a step size control strategyAltmijo method, is investi-
gated. Specifically, when a current pointis given, the next position, = =, — ap.,
needs to be founda, is the proposed step returned from PDM, TDM and SDM while
« is the step size for the movement determined by the Armijchogt In the imple-
mentation,« is set tol initially. The sufficient condition (described in the preus
chapter) is checked. If the sufficient condition is satisfteéeé current value of will

be accepted. Otherwisa,will be halved. The process is repeated until a value: of
to satisfy the sufficient condition has been foundhdnas been halved for more than
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the pre-determined maximum number of time (in our impleragon, it is set tad20)
to avoid infinite looping.

Experiment J1 (Refer to Figure 6.53)

In this experiment, the target data (an ellipsoid of whiahriédii are).25, 0.5 and1.0)
and the initial mesh (has the dimensidns x 1.0 x 2.0 and consists ot4 control
points) are identical to those in experimetit. (See Figure 6.3.) No smoothing term
is used. Figure 6.53 shows the error curves. PDMSC talaterations £.004 s) to
obtain anF,.,,, larger thar).002 while SDMSC and TDMSC take iterations ().080

s) andl iteration (.040 s) respectively.
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Figure 6.53: Error curves for experiment

Experiment J2 (Refer to Figure 6.54)

In this experiment, the target data (an ellipsoid of whiahriédii are).25, 0.5 and1.0)
and the initial mesh (4.0 x 4.0 x 4.0 cube, which consists af4 control points) are
identical to those in experimentl. (See Figure 6.17.) No smoothing term is used.
Figure 6.54 shows the error curves. PDMSC hagap, larger thar).002 after 100
iterations ¢.138 s) while SDMSC and TDMSC just taKeiterations ().240 s) and12
iterations ().812 s) to obtainF,.,,, smaller thar)).002 respectively.
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Experiment J3 (Refer to Figure 6.55)

In this experiment, an ellipsoid containing large curvasughaving the radii.25, 0.5
and4.0), which has been used in experimépit, is used as the target. The initial mesh
used has the dimensiofi$ x 1.0 x 8.0 and consists of4 control points. (See Fig-
ure 6.19.) No smoothing term is used. Figure 6.55 shows tbe @irves. PDMSC has
an E,,,, larger tharn).005 after 300 iterations $2.862 s) while SDMSC and TDMSC
just take2 iterations (.080 s) and1 iteration (0.030 s) to obtain an¥,,,,, smaller than
0.005 respectively.

Experiment J4 (Refer to Figure 6.56)

In this experiment, another ellipsoid containing largevatures (having the radii
0.125, 0.25 and4), which has been used in experimdpR, is used as the target. The
initial mesh used has the dimensidng5 x 0.5 x 8 and consists of4 control points.
(See Figure 6.21.) No smoothing term is used. Figure 6.5&/slloe error curves.
PDMSC has art,,, larger than).005 after 300 iterations {1.320 s) while SDMSC
and TDMSC just take iterations (.070 s) andl iteration (0.030 s) to obtain art, .,
smaller thar0.005 respectively.
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Experiment J5 (Refer to Figure 6.57)

In this experiment, the target data (a disc-shaped ellipgbivhich the radii ard .0,

1.0 and0.1) and the initial mesh(0 x 2.0 x 0.2, which consists ot4 control points)
are identical to those in experimeRtl. (See Figure 6.15.) The initial mesh is placed
in an orientation which is orthogonal to the target shape sidoothing term is used.
Figure 6.57 shows the error curves. PDMSC hag/ap, larger thar).001 after 100
iterations £6.429 s) while SDMSC and TDMSC just takis iterations (.741 s) and

10 iterations (.501 s) to obtainF,.,,,, smaller thar0).001 respectively.

Experiment J6 (Refer to Figure 6.58)

In this experiment, the target data (a disc-shaped elljpgbwhich the radii ard .0,

1.0 and0.1) and the initial mesh4(0 x 4.0 x 0.4, which consists ot4 control points)
are identical to those in experimeitt. (See Figure 6.25.) No smoothing term is used.
Figure 6.58 shows the error curves. PDMSC hagap, larger thar).001 after 100
iterations (¢.426 s) while SDMSC and TDMSC just take iterations (.480 s) and9
iterations (.410 s) to obtainFE,.,,, smaller thard).001 respectively.
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Figure 6.56: Error curves for experiment
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Figure 6.57: Error curves for experimenhi
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Figure 6.58: Error curves for experiment

Observation: The Armijo method improves the stability of PDM, TDM and SDM.

From the experiments, with the use of the step size contrtthode all PDM, TDM
and SDM are stable. In experiment8, J5 and.J6, in which TDM performs poorly
because of the far-away initial mesh, the step size contedhad improves the fitting
error dramatically. The price paid for the step size contrethod is the much longer
computational time. For details statistics, see the taii¢hfe time statistics of these
experiments in section 6.1.13. When compared with the LMhogktit is observed
that the cost required by the Armijo method is smaller.

6.1.11 Conclusions from Experiments

From the above experiments, it is observed that TDM and SDiwexge much faster
than PDM. These agree with the facts that PDM is the gradiesteht method which
has linear convergence rate while TDM and SDM are the Gagsgdh method and
the Newton method respectively.
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SDM and TDM have better capabilities in overcoming the ppaligned initial meshes.
ExperimentsB1-B4 demonstrate this. This is due to the fact that tangentialenov
ments of control points are hindered in PDM. For more compdeget data, if local
subdivision is allowed (i.e. multi-staged optimizationsjore control points are re-
quired for PDM than when compared with SDM and TDM, in addtibto the slower
convergence rate. Experimerft&@ and F'3 show this.

In cases which the initial meshes are far away from the tashapes, such as the
data used in experimeni$4, C'1 and D4, TDM fails to converge. These experimen-
tal results can be explained theoretically by the fact tHamMTis the Gauss-Newton
method and second-order term) 572 r(x) are discarded in the Hessian. The ig-
nored term becomes significant when eithér) or \y%r(x) is larger. With the use
of the LM method, TDM can handle these cases in a better wayiftyng the local
model closer to the steepest descent method if the currealk hoodel is detected to
be a poor approximation to the goal function. The local masglshifted closer to the
Gauss-Newton method if the current local model is deteaidubta good approxima-
tion to the goal function for faster convergence. Experitakeresults agree with the
theoretical analysis. Besides the LM method, the Armijohrodtalso shows the stabi-
lizing powers in the experiments. In the Armijo method, lgearch is performed after
the original PDM, SDM or TDM is carried out. One differencetween the Armijo
method and the LM method is that only the step size is modifi¢de Armijo method
while both the search direction and the step size are modifittge LM method.

6.1.12 Stability of TDM: from Computational Point of View

From the experiments, itis observed that pure TDM can beabiesin some situations.
Theoretically, we know that it is due to the poor approximasi of the Hessian in some
cases. From the computational point of view, it can also lie@d that the coefficient
matrices formed from TDM have largest condition numbers thase from PDM and
SDM. Itis well known that large condition numbers can leadristable computations;
and this fact can also account for the observed unstablevimebdor TDM in some of
the experiments. Table 6.1 gives the condition numberseotidefficient matrices in
one particular iteration of PDM, SDM and TDM in experimerts and £3.
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PDM cond. no. SDM cond. no. TDM cond. no.
Experiment Al| 64.78,89.95 1.776 x 10°,6.68 x 10° | 1.06 x 10°,3.07 x 10°
Experiment E3|| 7.21,14.29 128.24, 356.87 153.85,410.72

Table 6.1: Condition numbers of coefficient matrices in oaeipular iteration of
PDM, SDM and TDM in experimentsll and £3. In each condition number entry,
the first number is the 2-norm condition number and the senantber is the infinity-
norm condition number.

6.1.13 Computational Issues

The codes of PDM and TDM are adapted from that of SDM by reptathe SD error
function(2.5) with the PD error functiori2.2) and the TD error functiof®.3) respec-
tively.

Note that distance field pre-computation is needed for aMPDDM and SDM. Nor-
mal vector information is needed for TDM and SDM. Curvature-pomputation is
only required by SDM. Tables 6.2, 6.3, 6.4 and 6.5 show some $tatistics for the
experiments.

Regarding the computational efficiency, SDM needs muchdotighe than PDM and
TDM on pre-computation since curvature information is nequired in PDM and
TDM. In each iteration, SDM takes more time since SDM needsadime to set up
the more complex distance function.

6.2 More Examples

In this section, we present more examples to show that oungfithethod works well
in fitting subdivision surfaces to more complex target paiouds. The models are
scaled such that the longest dimension of the modeDis

Figures 6.59, 6.60, 6.61, 6.62, 6.63 and 6.64 show the d&gdmea head (Igea), a
ball joint, a rocker arm, an armadillo, a bunny and a buddges; the ball joint and
the rocker arm come from http://www.cyberware.com. Theaalitto, the bunny and
the buddha come from http://www-graphics.stanford.eal@3Dscanrep). The fig-
ures show the initial meshes, the optimized control mesp&M, the initial and the
optimized subdivision surfaces with color error coding #melshaded optimized sub-
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PDM

SDM

TDM

Experiment Al (100 iters.

7.148s

8.281s

7.482s

Experiment A2(100 iters.

1.602s

1.644s

1.783s

Experiment B1 (300 iters.

1.733s

1.784s

1.703s

Experiment B2 (300 iters.

15.230s

15.564s

14.606s

Experiment B3 (100 iters.

1.862s

2.643s

2.615s

Experiment B4(100 iters.

1.854s

1.844s

1.854s

Experiment C1 (100 iters.

1.762s

1.920s

1.833s

Experiment D1 (300 iters.

4.728s

5.075s

5.125s

Experiment D2 (300 iters.

5.006s

5.389s

5.238s

Experiment D3 (100 iters.

1.745s

1.701s

1.602s

Experiment D4 (100 iters.

1.692s

1.723s

1.543s

Experiment E1 (100 iters.

10.355s

10.358s

10.210s

Experiment E2 (100 iters

10.596s

10.675s

10.475s

Experiment E3 (100 iters.

36.402s

38.006s

38.139s

Experiment E4 (100 iters.

36.301s

38.469s

38.665s

Experiment F1 (50 iters.)

23.365s

23.635s

24.775s

Experiment F2 (50 iters.)

18.345s

19.450s

19.413s

Experiment F3 (50 iters.)

21.028s

25.169s

20.874s

95

Table 6.2: Time statistics for experiments-£'3. Pre-processing time is not included.

division surfaces. Blue, green, yellow and red represent&m the range| 0.005),
[0.005,0.01), [0.01,0.015) and P.015, c0), respectively.

Table 6.6 gives the timing data for the preprocessing sté&ps data point, nearby
points that lie within its neighborhood 6f03 are used for computing the curvatures.
Table 6.7 shows error statistics. Table 6.8 shows the bozakaf the time used in
different tasks in optimization. From Table 6.8, we obsehat the time for gener-
ating entries of the matrix of the linear equations is sutisahwhen compared with
other parts. Note that the number of data points affects thayime used for the pre-
processing steps, but does not affect the time used in theiaption step, which is
mainly determined by the number of control points.

We would like to compare the fitting result of the Igea modefFigure 6.60 with that
in [35]. In that paper, the projection direction is diffetérom that in our approach.
In [35], target data points are projected on the fitting suisthn surface. In our ap-
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E,... Threshold| Time(without LM) | Time (with LM)
Experiment H1 0.002 0.010s 0.551s
Experiment H2 0.002 N.A. (very unstable 1.593s
Experiment H3 0.005 0.030s 1.221s
Experiment H4 0.005 0.020s 0.511s
Experiment H5 0.001 N.A. (very unstable 1.662s
Experiment H6 0.001 N.A. (very unstable 0.962s

Table 6.3: Time statistics for experimentsl-H6. Time required forE,,,, to fall
below the threshold is presented. Pre-processing timetisdoded.

E,pms | Time(without LM) | Time (with LM)
Experiment 11| 0.002 0.020s 1.011s
Experiment 12| 0.002 0.071s 1.042s
Experiment 13| 0.005 0.050s 1.321s
Experiment 14| 0.005 0.040s 0.711s
Experiment 15| 0.001 0.151s 2.231s
Experiment 16| 0.001 0.221s 1.743s

Table 6.4: Time statistics for experimerits- /6. Time required for~,.,,., to fall below
the threshold is presented. Pre-processing time is natded.

proach, sample points on the subdivision surface are pgeajem the target shape.
Projecting target data points on the fitting subdivisioriaee has an advantage that the
details of the target shape will not be missed by the fittingdstision surface easily.
However, projecting target data points on the fitting suistim surface also implies
that the foot points of the target data points on the fittingdsuision surface cannot be
precomputed efficiently.

From Table6.9, we can see that our approach obtains a sméllgt within a shorter
time although using a larger number of control points (ThedAQvhich we run the
experiment has the same specification as that used in [35]) rloticed that our
approach gives a slightly highét,, error. But, since we compute the error by finding
the closest target data point for each sample point on théiaalon surface instead of
computing the shortest distance between the sample pdim tiarget shape, we have
over-estimated the error. Indeed, the average spacingebatthe target data point in
this point cloud i90.004837, which is in the same order magnitude of atiy, error
(0.004495) (The Igea model that we use has the dimensibé&6 x 0.997 x 1.0).
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Time(without step size control) Time (with step size control
Experiment J1 (SDM)| 0.002 0.020s 0.080s
Experiment J1 (TDM)| 0.002 0.010s 0.040s
Experiment J2 (SDM)| 0.002 0.071s 0.240s
Experiment J2 (TDM)| 0.002 N.A. (very unstable) 0.812s
Experiment J3 (SDM)| 0.005 0.050s 0.080s
Experiment J3 (TDM)| 0.005 0.030s 0.040s
Experiment J4 (SDM)| 0.005 0.040s 0.070s
Experiment J4 (TDM)| 0.005 0.020s 0.030s
Experiment J5 (SDM)| 0.001 0.151s 0.741s
Experiment J5 (TDM)| 0.001 N.A. (very unstable) 0.501s
Experiment J6 (SDM)| 0.001 0.221s 0.480s
Experiment J6 (TDM)| 0.001 N.A. (very unstable) 0.410s

Table 6.5: Time statistics for experiments-.J6. Time required forE,,,, to fall below
the threshold is presented. Pre-processing time is natded.

No. of data points Curvatures Distance fields
Ball joint 137062 95.83s 52.51s
lgea 134345 36.07s 215.69s
RockerArm 40177 14.91s 70.48s
Armadillo 172974 4.44s 191.47s
Bunny 35201 212.74s 148.26s
Buddha 543652 4837.67s 200.66s

Table 6.6: Time statistics for pre-computing curvatured distance fields. Time is

measured in seconds.
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No. of No. of Smoothing E,, E, s

iterations| control points| term coefficient
Ball joint 29 416, 551 0.01, 0.0001 | 0.0035| 0.0008
lgea 14 526, 2464 | 0.01, 0.00001 | 0.0029| 0.0005
RockerArm 15 870, 950 0.01, 0.00001| 0.0018| 0.0003
Armadillo 12 602, 9602 | 0.01, 0.00001| 0.0212| 0.0020
Bunny 14 919, 996 0.01, 0.00001 | 0.0037| 0.0009
Buddha 7 4668, 4773 | 0.01, 0.00001| 0.0032| 0.0004

Table 6.7: Statistics for the examples. The numbefgdnof control pointdield refer
to the number of control points in the initial control meslaesl the final optimized
control meshes. The numbers3moothing term coefficiergfer to the initial and the
final values for the smoothing term coefficient. The totaldidoes not include the
time on pre-computation.

Equations| Equations| Error Total
setup solving | evaluation| time
Ball joint 38.68s 31.17s 3.61s 73.47s

Igea 60.04s 51.79s 6.85s | 118.69s
RockerArm| 41.04s 30.52s 6.86s 78.43s

Armadillo 506.56s | 51.75s 65.25s | 623.56s
Bunny 39.63s 32.57s 5.13s 77.35s

Buddha 394.09s | 112.18s| 20.58s | 526.86s

Table 6.8: Time statistics. Time is measured in seconds.

Final no. of | FE,, E...s | Timetaken
control points| (%) (%) (min:sec)
Result in [35] 1553 0.247| 0.05755 8:29

Our result 2464 0.185| 0.03251 1:58

Table 6.9: Comparison with the approach in [35] for the Igemlel. The errord,,
andFE,,,, are expressed in percentage of the diagonal of the model.
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Figure 6.59: Ball Joint: (a) Point cloudl 37062 points; dimensions).87 x 0.50 x 1)
(b) Initial mesh. 416 control points) (c) Initial subdivsion surface. (d) Shacdsedb-
division surface. (e) Optimized mesh5( control points) (f) Optimized subdivision
surface. Max. Err.: 0.0035; RMS. Err.: 0.0008.



CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSIONS 100

TR
//"EFA\YA S
WA‘VA %v‘l’r}%&
M‘ Nﬁn@%ﬂm
A

RN w\«v» rm
\i\ﬁ\ “"immg

(f)

(d)

Figure 6.60: Igea: (a) Point cloudl34345 points; dimensions).70 x 1 x 1) (b) Initial
mesh. {26 control points) (c) Initial subdivision surface. (d) Shddsubdivision
surface. (e) Optimized mesh4(4 control points) (f) Optimized subdivision surface.
Max. Err: 0.0029; RMS. Err.: 0.0005.
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Figure 6.61: RockerArm: (a) Point cloudi((L 77 points; dimensiong).51 x 1 x 0.30)
(b) Initial mesh. 70 control points) (c) Initial subdivision surface. (d) Optzad sub-
division surface. (e) Optimized mesh5( control points) (f) Optimized subdivision
surface. Max. Err.: 0.0018; RMS. Err.: 0.0003.
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Figure 6.62: Armadillo: (a) Point cloud172974 points; dimensiong).84 x 0.76 x 1)
(b) Initial mesh. 02 control points) (c) Initial subdivision surface. (d) Optzed
mesh. 9602 control points) (e) Optimized subdivision surface. Maxr.E0.0212;

RMS. Err.: 0.0020.
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Figure 6.63: Bunny: (a) Point cloud3{201 points; dimensionst x 0.78 x 0.99) (b)
Initial mesh. 019 control points) (c) Initial subdivision surface. (d) Optzad sub-
division surface. (e) Optimized mesh96 control points) (f) Optimized subdivision
surface. Max. Err.: 0.0037; RMS. Err.: 0.0009.
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Figure 6.64: Buddha: (a) Point cloud40652 points; dimensiong).41 x 0.41 x 1) (b)
Initial mesh. @668 control points) (c) Initial subdivision surface. (d) Optiad sub-

division surface. (e) Optimized mesk.7{3 control points) (f) Optimized subdivision
surface. Max. Err.0.0032; RMS. Err.:0.0004.



Chapter 7
Conclusion and Future Work

In this piece of research work, we have studied differeninaigaition methods, which
include PDM, TDM, SDM, for fitting subdivision surfaces to amganized points.
Among them, SDM is newly introduced to the problem of sulsiom surface fit-
ting. On top of that, we apply the LM method (a trust region moe) and the Armijo
method (a line search method), to improve the stability effitting process. From the
experiments, we observe that the behaviors of variousdittiethods agree with what
the underlying theories in optimization predict.

An important contribution of this thesis is that we give aatl@icture about the re-
lationships between different distance error functiongoal functions in surface fit-
ting problem and the optimization theories. Specificallg show that PDM, TDM
and SDM are indeed the gradient descent method, the Gawe®iNmethod and the
Newton method in optimization theories. Theoretically,pveve that SDM is derived
from the standard Newton method. To ensure the positiveitiiass of the Hessian,
slight modification is applied at some circumstances.

Our experiments show that both SDM and TDM converge muclerfasian PDM.
Since the Newton method has quadratic convergence, thik esglains the superior
convergence behavior of SDM over PDM, which is known to hawvedr convergence.
TDM, as the Gauss-Newton method, is also expected to hater faenvergence rate
than the commonly used PDM. From experiments in which laugeature regions are
present in the target data, TDM does not work well aroundahgel curvature regions.
And this behavior can be explained by the fact that some tures-related second
order terms in the Hessian are discarded in the Gauss-Nengtmod.

105
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With the use of the LM method, the agreement between the &paoximated model
and the actual goal function is checked. As demonstratdueiexperiments, the LM
method solves the stability problem of TDM when the targeipss contain large cur-
vature regions.

With the use of the Armijo method, the step size of a step isprded after the direc-
tion is determined by some other methods. As shown in therarpats, the Armijo
method improves the stability of the optimization process.

There are several problems that still call for further resiea First, a more effective
method needs to be devised to determine the coeffigiémtthe smoothness teri,.
Second, features like edges and corners in data sets cateseedien order to make the
subdivision surfaces preserve the detected features itter meay. Third, we would
like to study the various fitting methods described in thissik to fitting surfaces
to noisy point clouds, for which it is difficult to have accteacurvature estimation
required by SDM presented here. Fourth, the fitting methedsmbed in this thesis
should be able to be adapted to deal with target shapes wéh lbpundaries. Fifth,
SDM should be able to handle the 3D deformable model regjistrgproblem after
appropriate modifications. Finally, the fitting approaclsa@ed here is still a local
optimization technique. In this regard, there is a need sigmhean active subdivision
scheme that allows the fitting surface to evolve from a sirmmpt&l shape to converge
to a given target shape in a global manner, as what has beerrdoiier active contour
approaches such as the snake method [12,13] and the |¢veeg®d [15-19].
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