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In this thesis, we study the problem of fitting a subdivision surface to an unorganized

point cloud. We choose to use the subdivision surface because it is a compact repre-

sentation that is capable of representing shapes with arbitrary topology.

On the practical side, we describe a general fitting procedure as an optimization pro-

cess. Starting with an initial mesh, the positions of the control points are modified

to minimize the objective function. The objective functionconsists of the geometric

distance component and the smoothing term component. Sincenew control points are

inserted during the fitting process, this involves a multi-staged optimization process.

We initially follow the traditional approach, reported in anumber of studies in recent

years, of performing foot point projection and solving a linear optimization problem

alternatively and repeatedly. The point distance (PD) error function is commonly em-

ployed in the objective function and the resulting method isknown as the alternating

method. It is the PD error function which makes the alternating method converge only

linearly. In the hope of improving the convergence rate for the fitting process, we

investigate the tangent distance (TD) error function whichhas been used in the field

of computer vision and the squared distance (SD) error function recently proposed by

Pottmann et al. With the use of these distance error functions, we observe faster con-

vergence rates. We also incorporate some slight modifications to improve the stability

of the fitting process and resolve several ill-conditioned problems.

Besides outlining a general fitting procedure, we also make several theoretical contri-

butions. We show that methods based on the PD error function are gradient descent



method and methods based on the TD error function are Gauss-Newton method. We

also prove that methods based on the SD error function are Newton method. Compre-

hensive experiments are conducted to investigate the convergence rates and to reveal

the advantages and disadvantages of the methods based on various distance error func-

tions. We find that the observed experimental behaviors for PDM, TDM and SDM

can be explained by optimization theories regarding the gradient descent method, the

Gauss-Newton method and the Newton method. We also apply thetrust region method

and the line search method to stabilize the fitting process. This improves the perfor-

mance of the fast converging methods (TDM and SDM).

In summary, this thesis describes the practical flow for fitting subdivision surfaces to

point clouds and analyzes fitting methods based on various distance error functions. It

clearly demonstrates the relationships between differentpractical fitting methods and

the corresponding optimization techniques.

(417 words)
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Chapter 1

Introduction

In this research, we solve an important problem in the field ofcomputer graphics.

Nowadays, point clouds, the resulting products from 3D scanning devices, are impor-

tant input sources to the modeling modules in computer graphics applications. But,

for further geometrical operations, a more compact representation is often required.

Subdivision surface is an appropriate choice since subdivision surfaces can represent

shapes of arbitrary topologies. We use Loop’s subdivision surfaceS [1] in our im-

plementation, but the material discussed in this thesis canbe applied to other linear

subdivision schemes as well. To make our approach work for general situations, we

work on raw point clouds.

First, the general flow for fitting subdivision surfaces to unorganized point clouds is

described. To start the fitting process, an initial subdivision surface is generated from

the point cloud by applying the dual marching cubes approach. Other approaches,

which can give initial meshes of correct topologies with reasonable number of control

points, can be used in this step. Then, the control points aremodified by optimizing

the goal function through iterative minimization. Throughout the fitting process, the

number of control points is increased and some other parameters are adjusted when

necessary. Hence the whole process is a multi-staged optimization problem.

From the optimization point of view, surface fitting problemis a nonlinear least squares

problem. The detailed problem formulation will be given in section 1.1. Simply speak-

ing, the goal function consists of a geometric distance termand a smoothing term. Dif-

ferent distance error functions can be used as the local model of the geometric error

term in the goal function. Throughout decades, many researchers tackle this problem

by following the paradigm of the alternating method, of which the key idea is to sepa-

1



CHAPTER 1. INTRODUCTION 2

rate the variables into two groups and then solve a linear least squares problem and a

one-dimensional minimization alternatively. In these methods, surprisingly, the point

distance (PD) error function seems to be the undoubtable choice for the local model of

the geometric distance term. Since only linear convergencerate can be obtained from

these methods, we consider other distance error functions,in particular, the tangent

distance (TD) error function and the squared distance (SD) error function. (The de-

tailed descriptions about various distance error functions will be given in section 2.3.)

With the replacement of the distance error function, we are able to obtain faster conver-

gence rates. Furthermore, we describe how to make use of the Levenberg-Marquardt

(LM) method and the Armijo method for improving the stability of the optimization

methods.

On the other hand, we find that there does not exist a comprehensive theoretical study

on optimization methods for surface fitting. So, besides devising efficient methods

for subdivision surface fitting, we also aim at providing analysis of the optimization

method. We show that PDM, methods that use the PD error function, are the gradient

descent method and TDM, methods that use the TD error function, are the Gauss-

Newton method. We also prove that SDM, the newly devised method that uses the

SD error function, can be derived from the Newton method. Based on the theoretical

study of these methods, the behaviors observed in the experiments can be explained.

The relevant fundamental theories in optimization and their relations with the opti-

mization methods used in the surface fitting problem will be given in section 5.

1.1 Problem Formulation

Throughout the thesis, we adopt the notation defined in this section. The target shape

is denoted byΓ, which is a point cloud. It is assumed that the underlying surface of the

target point cloud is a twice differentiable smooth surface. The subdivision surfaceS

is the active subdivision surface used to fit toΓ. S has a control mesh which consists of

n control points. Throughout the fitting process, the positions of then control points

P = {Pi} are modified according to the optimization results. In some situations,n can

be increased so as to increase the degree of freedom for achieving better fitting result.

During the process of forming local quadratic models of the goal function and eval-

uating fitting error, points on the subdivision surfaceS are sampled. These points,
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P (uk, vk), on S are denoted to be sample points (uk andvk are surface parameters)

andN is the number of sample points.

After defining the notations, we would like to formulate the problem formally. The sur-

face fitting process can be formulated as the following nonlinear least squares problem:

Min(P,s,t)Φ(P, s, t) =

N
∑

i=1

SDF (P, si, ti) + SMT (P), (1.1)

where the variables areP = {Pi} (control points of the subdivision surfaceS) and

s = {si}, t = {ti} (sets of surface parameters of the foot points onΓ for sample

points P (uk, vk)). Sample pointsP (uk, vk) are linear combinations of the control

pointsPi. SDF (·), the squared distance error function, gives the squared distances

between sample pointsP (uk, vk) and their corresponding foot pointsR(sk, tk) on Γ.

SMT (·) is the smoothing term, which is a quadratic function of the control pointsP.

The procedure for solving this problem will be discussed in details in section 2.2 in

the next chapter. During the fitting process, the influence ofSMT (·) is adjusted and

the number of control points (n) of the subdivision surfaceS is gradually increased via

local subdivisions in regions of large errors. Hence our fitting process is a multi-staged

optimization.

1.2 Related Work

The problem of computing a compact surface representation of a target shape given

by a set of unorganized data points has many applications in computer graphics, CAD,

and computer vision. A typical example is computing a piecewise smooth surface,

which can be a B-spline surface (including a NURBS surface) or a subdivision sur-

face, that approximates a given target shape within a pre-specified error tolerance.

Compared with the traditional methods based on B-spline surfaces, the approach using

subdivision surfaces has gained increasing attention due to the facts that subdivision

surfaces can deal with object of general topology and they have arbitrary connectiv-

ity of the control meshes [2, 3]. Approaches of different categories were proposed

over the past decade. These include local fitting approaches[4–11], active surface ap-

proaches [12–23], implicit surface approaches [24–27] andother approaches [28–32].

Among the previous works, some are more relevant to the particular problem that we

are solving. In Hoppe et al.’s method [4, 5], an initial densemesh is generated from

a set of unorganized points and is then decimated to fit the target shape via optimiza-
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tion of an energy function. Finally, a smooth subdivision surface is obtained from the

mesh again via optimization. In Ma et al.’s method [7–9], base surfaces are built for

obtaining the parameter values of the data points. Then a least squares procedure is

used to fit B-spline surfaces on patches of general quadrilateral topology and Catmull-

Clark surfaces on extraordinary corner patches. In [10], closest point search on Loop’s

surface is performed by combining the Newton iteration and non-linear minimization,

followed by an optimization with respect to theL2 metric. In these methods, when the

geometric error between the fitting surface and the target shape needs to be measured

or minimized, the PD error function is used. Optimization methods belong to such a

scheme, also called the alternating method [33], is typically used for solving separable

nonlinear least squares problems, and is known to have only linear convergence.

In this research work, we propose to use the TD error functionand the SD error func-

tion in the goal function. The fitting behaviors of various distance error functions

are observed in the experiments. Our work differs from the two closely related re-

cent works (Pottmann et al.’s work [34] and Kobbelt et al.’s work [35], the extension

of [10]) in several aspects. Pottmann et al.’s work makes useof SDM in the problem

of B-spline surface fitting. Compared with their work, we perform multi-staged opti-

mization which allows control point insertions. Moreover,we tackle the problem of

automatic initial shape specification by applying the dual marching cubes algorithms.

Kobbelt et al.’s work applies the blend of PDM and TDM in subdivision surface fit-

ting problem. In our work, besides PDM and TDM, we also consider SDM. More

importantly, our work fills the gap between the classical optimization methods and the

practical fitting procedures used in decades in the field of computer graphics by pre-

senting the theoretical analysis of old and new fitting methods. On top of that, we also

propose stable algorithms by applying a trust region methodand a line search method

to the optimization process.



Chapter 2

Background

2.1 Subdivision Surfaces

Subdivision surface is defined by a control mesh and a set of subdivision rules. Given

a control mesh, the limit surface can be obtained by applyingthe subdivision rules to

the mesh successively.

In 1974, Chaikin devised a subdivision scheme for curve [36]. It waslater proved by

Riesenfeld [37] that the limit curve under Chaikin’s subdivision scheme is a quadratic

B-spline curve. In1978, Doo-Sabin surfaces [38] and Catmull-Clark surfaces [39]

were devised. After that, there were many subdivision schemes [1–3, 40, 41] pro-

posed in the literature. Subdivision surface can be classified in different ways: pri-

mal [1, 39–41] or dual [38]; triangular [1, 40] or quadrilateral [38, 39, 41] and interpo-

lating [40, 41] or approximating [1, 39]. Primal schemes refer to schemes that involve

face refinements while dual schemes refer to schemes that involve vertex refinements.

Face refinements mean that new faces are generated from one original face according

to the subdivision rule. Vertex refinements mean that new vertices are generated from

one original vertex according to the subdivision rule. Surfaces in triangular scheme

consist of triangular faces while surfaces in quadrilateral scheme consist of quadrilat-

eral faces. Under interpolating schemes, points in controlmeshes are also points in the

limit surface. Under approximating schemes, points in control meshes are in general

not points in the limit surface.

In our work, we choose to use Loop’s surface [1]. Loop’s scheme, a generation of

quartic triangular B-splines devised in1987, is primal, triangular, approximating and

5
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can produce tangent plane continuous surfaces. Although wechoose to implement

this particular scheme, our proposed method and analysis can be applied to any linear

subdivision scheme. In linear subdivision scheme, controlpoints of subdivision sur-

faces in the next level can be expressed as a linear combination of control points in the

current level. Consequently, points on the limit surface can be expressed as a linear

combination of the initial control points. Figure 2.1 showsthe meshes from the first

level to the sixth level for a polygonal cone. Figure 2.2 shows the first, the second and

the third levels of the mesh for the Bunny model.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Loop’s surface: (a) The1st level mesh (no. of triangles:16). (b) The2nd

level mesh (no. of triangles:64). (c) The3rd level mesh (no. of triangles:256). (d)

The4th level mesh (no. of triangles:1024). (e) The5th level mesh (no. of triangles:

4096). (f) The6th level mesh (no. of triangles:16384).

Now, we describe Loop’s subdivision scheme. This scheme is designed to apply to

triangular polyhedra. For one level of subdivision, a triangle is split into four triangles

by adding on each edge a new vertexPN given by

PN =
3

8
(Pa + Pb) +

1

8
(Pc + Pd),

wherePa, Pb are the two vertices of the edge, andPc, Pd are the other vertices of the

two triangles that are incident to the edgePaPb. See Figure 2.3.

Then the original verticesPi are modified by the following rule:

Pi = (1 − kβ)Pi + β
k

∑

j=1

Pn(i,j),
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(a) (b)

(c) (d)

Figure 2.2: Loop’s surface: (a) The1st level mesh (flat shading) (no. of triangles:

3040). (b) The2nd level mesh (flat shading) (no. of triangles:12160). (c) The3rd level

mesh (flat shading) (no. of triangles:48640). (d) The3rd level mesh (smooth shading)

(no. of triangles:48640).

Pa Pb

Pc

Pd
PN

(a) (b)

Figure 2.3: (a) Before the insertion ofPN . (b) After the insertion ofPN .
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wherek is the degree of the vertexP andPn(i,j) is thejth neighboring point ofPi,

β = 3/16 if k = 3, and

β =
1

k

[

5

8
−

(

3

8
+

1

4
cos2

(

2π

k

))2
]

if k > 3.

Figure 2.4 illustrates the modification ofPi.

Pi

Pn(i, 1)

Pn(i, 4)
Pn(i, 5)

Pn(i, 2)

Pn(i, 3)

updated Pi

(a) (b)

Figure 2.4: (a) Before the update ofPi. (b) After the update ofPi.

2.2 Solving Approach: Separation of Variables

As we described in the Problem Formulation section in the previous chapter, the subdi-

vision surface fitting process solves for the variablesP ands, t in Equation 1.1. How-

ever, the variables are not all solved at one time. Instead, they are separated into two

groups,(i) P and(ii) s, t. For fixedP, it is easy to minimize each termSDF (P, si, ti)

with respect tosi andti. This step is done by the foot point projection. During foot

point projection, for each sample pointP (ui, vi) onS, its closest pointR(si, ti) on Γ

is found. After the step of foot point projection, the variabless andt are fixed to bes

andt. Then, in the next step, the minimization problem becomes:

Min(P)Ψ(P) =
N

∑

i=1

SDF (P, si, ti) + SMT (P), (2.1)

which is a linear least squares problem. In this way, the nonlinear least squares problem

is solved by performing foot point projection and solving a linear squares problem
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repeatedly and alternatively. In other words, separation of variables turns a nonlinear

least squares problem into a series of linear least squares problems which can be solved

more efficiently. Furthermore, during the fitting process, less memory space is required

when the problem is solved using this approach since the number of variables at a

particular stage is much fewer. In this research work, we study various local models

for SDF (·) in the goal function and aim at obtaining better fitting performance. Three

different distance error functions are discussed in the next section.

2.3 Distance Error Functions

During the fitting process, a goal function needs to be defined. The geometric error

between the fitting subdivision surface and the target contributes the main part of the

goal function. In practice, various different error functions are defined as the local

quadratic models of the objective function.

Given a sample pointP (uk,0, vk,0) on the fitting subdivision surface, its foot point,

R(sk, tk), on the target shapeΓ is determined. In other words,R(sk, tk) is the clos-

est point onΓ to P (uk,0, vk,0). Then, the distance error function for a variable point

P (uk, vk) (in the neighborhood ofP (uk,0, vk,0)) to Γ can be defined in several ways.

2.3.1 Point Distance Error

The (squared) point distance (PD) error function is defined by

F+
PD(P (uk, vk), sk, tk) = ‖P (uk, vk) − R(sk, tk)‖

2
2. (2.2)

Optimization schemes using the PD error function are calledPoint Distance Minimiza-

tion (PDM). PDM is widely used in existing optimization applications such as [42–44].

From the theoretical point of view, PDM is just the gradient descent method. It is well

known to have linear convergence rate. The simplicity of this error function may ex-

plain its popularity.

2.3.2 Tangent Distance Error

The (squared) tangent distance (TD) error function is defined by

F+
TD(P (uk, vk), sk, tk) = [(P (uk, vk) − R(sk, tk))

TN ]2, (2.3)
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whereN is the unit normal vector at the foot pointR(sk, tk).

Optimization schemes using the TD error function are calledTangent Distance Min-

imization (TDM). Blake et al. [12] used the TD error in the problem of extracting

boundary curves of the objects in images. From the theoretical point of view, TDM is

the Gauss-Newton method. For zero residual problem, it is well known that the Gauss-

Newton method has quadratic convergence rate [45–47]. For large residual problem,

the Gauss-Newton method can have unstable behavior and cannot achieve quadratic

convergence rate.

2.3.3 Squared Distance Error

Recently, Pottmann et al. [34, 48, 49] proposed a general paradigm of shape approx-

imation based on the minimization of a novel quadratic approximant of the squared

distance function. Letd = ‖P (uk,0, vk,0) − R(sk, tk)‖2 be the Euclidean distance be-

tweenP (uk,0, vk,0) andR(sk, tk). Let ρ1 andρ2 be the principal curvature radii of the

surfaceΓ atR(sk, tk). LetT1 andT2 be the unit vectors in the corresponding principal

curvature directions. LetN be the unit normal vector, i.e.,N = T1 × T2. A quadratic

approximant of the squared distance function from a variable pointP (uk, vk) in the

neighborhood ofP (uk,0, vk,0) to Γ is given by

F+
SD(P (uk, vk), sk, tk) =

d

d − ρ1
[(P (uk, vk) − R(sk, tk))

TT1]
2

+
d

d − ρ2
[(P (uk, vk) − R(sk, tk))

TT2]
2

+ [(P (uk, vk) − R(sk, tk))
TN ]2. (2.4)

It is noticed thatF+
SD(·) can be negative since the coefficientsd

d−ρ1

and d
d−ρ2

can be

negative. In practice, this function is modified as follows for ensuring that the resulting

matrix for the local quadratic model is positive definite:

F+
SD(P (uk, vk), sk, tk) =

⌊

d

d − ρ1

⌋

0

[(P (uk, vk) − R(sk, tk))
TT1]

2

+

⌊

d

d − ρ2

⌋

0

[(P (uk, vk) − R(sk, tk))
TT2]

2

+ [(P (uk, vk) − R(sk, tk))
TN ]2, (2.5)

wherebxc0 = max{x, 0}.
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The signs ofd, ρ1 andρ2 are determined with respect to the local frame at the tar-

get point. The radii of curvatureρ1/2 is positive if the curvature center in the normal

section along the tangent vectorT1/2 is outside the target shape. Otherwise,ρ1/2 is

negative. Figure 2.5 illustrates the cases for positive curvature and negative curvature.

N

inside

outside

N

inside

outside

Figure 2.5: Left: Positive curvature; Right: Negative curvature.

This function is called the squared distance (SD) error function. Optimization schemes

using the SD error function are called Squared Distance Minimization (SDM). The

ellipsoid in Figure 2.6 shows an iso-distance surface defined by the SD error function

for surface fitting.

Figure 2.6: An iso-surface of the SD error function, with a local coordinate frame at

the pointp.

Pottmann et al. applied SDM successfully to solve a series ofgeometric optimiza-
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tion problems, including the problem of fitting B-spline curves and surfaces to some

smooth target shapes [34, 48]. Yang et al. [50] studied how todefine initial shapes

and adjust the number of control points when using SDM for B-spline curve approx-

imation. Wang et al. [51] solved the B-spline curve fitting problem using SDM by

projecting the points in the target point cloud to the B-spline curve. In our work, we

use the SD error function in the problem of fitting subdivision surfaces to point clouds.

SD error function is an appropriate error metric for shape approximation since it mea-

sures the distance from a data point to a surface rather than the distance from a data

point to a particular point on the surface. Unlike the PD error function, the SD error

function takes the local geometry of the target surfaceΓ into account. At low curvature

regions of the target, the points of the fitting surface can move tangentially to attain

a better distribution without causing much penalty from theSD error term. However,

tangential movement is inhibited by the PD error term. For the TD error term, it is

not stable near high-curvature regions because tangent planes are poor approximations

to the surface in high-curvature regions. Inappropriate large step size is used in TDM

and this is due to the omission of important curvature related parts in the true Hessian

of the goal function. From the theoretical viewpoint, one can view SDM as a modifi-

cation of the Newton method. It converges much faster than the commonly used PDM.

In chapter5, relationships between PDM, TDM, SDM and the standard optimization

methods are given in more details. Furthermore, we will showthat SDM can be derived

from the Newton method. Hence, we expect that SDM has better convergence behavior

than PDM (which is known to have only linear convergence).



Chapter 3

Fitting Procedure

In this chapter, we describe the general flow of fitting subdivision surfaces to point

clouds. More detailed issues about some steps in the procedure are discussed in the

next chapter. Different optimization methods, such as PDM,TDM and SDM, share

the same flow. Figure 3.1 illustrates the overall procedure.

3.1 Normalization of Target Shape

The dimensions of input point clouds are arbitrary. Different 3D scanning systems or

modeling modules produce models of different dimensions. In order to avoid the de-

pendence of the parameters in the optimization system on thedimensions of the input

point clouds, target shapes are normalized by uniform scaling such that all data points

fall in the cube[0, 1]3. Specifically, the longest dimension amongx, y andz is scaled

to 1.0. This step makes the terms in the least squares formulation unitless.

3.2 Pre-computations of Distance Field and Curvature

Information

We tackle the subdivision surface fitting problem using the approach of separation of

variables. Foot point projection is one of the key steps. This step is costly if foot point

projection is done in a brute-force manner. To improve the efficiency of setting up

the local model of the goal function, distance field for the target shapeΓ is computed.

Also, curvatures, which are required in SDM, are also computed in a preprocessing

13
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start

done

yes

no

yes

no

Terminate?

Need to refine the
control mesh?

Normalize the target

Pre-compute the
distance field and

curvatures

Generate initial mesh

Sample points on the
fitting subdivision

surface

Form local quadratic
models of the goal

function

Optimize

Evaluate fitting error

Refine control mesh

Figure 3.1: The fitting procedure.
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step.

3.3 Initial Mesh Generation

To start the optimization process, an initial control mesh for the fitting subdivision sur-

face is required. Since the approach described in this thesis is not a global approach,

the initial mesh cannot be too far away from the target. To obtain an initial control

mesh, we start with an octree for the target shape and then follow the procedure in

the dual marching cubes algorithm [52]. For more details, see section 4.3 in the next

chapter.

3.4 Points Sampling on Active Subdivision Surface

Setup of the equation for minimizing the goal function and error evaluation require a

set of sample pointsP (uk,0, vk,0). These sample points are the points on the limit sur-

face of the active subdivision surface. They are generated using the approach devised

by Stam [53,54].

3.5 Equation Setup

After theN sample pointsP (uk,0, vk,0) are generated in the previous step, the follow-

ing goal function can be set up:

F+(P, s, t) =
1

N

N
∑

k=1

F+
D (P (uk, vk), sk, tk) + λFs, (3.1)

whereP (uk, vk) is a variable sample point associated withP (uk,0, vk,0), sk andtk are

the surface parameters of the foot point onΓ for the sample pointP (uk,0, vk,0) and

F+
D (·) is the local quadratic models for the geometric error part ofthe goal function.

Depending on which distance error function is used,F+
D (·) can beF+

PD(·), F+
TD(·) or

F+
SD(·) (the distance functions for PDM, TDM and SDM described in theprevious

chapter).Fs is a smoothing term andλ is the coefficient forFs.



CHAPTER 3. FITTING PROCEDURE 16

Compared with the PD error, the TD error and the SD error require the normal vec-

tor information. Additionally, the SD error further requires the curvature information.

Those normal vector and curvature information can be obtained efficiently after the

pre-processing steps.

3.6 Equation Solving

Since the variable sample pointP (uk, vk) is a linear combination of the control points

Pi, the functionF+
D (·) is a quadratic function of thePi. SinceFs is also a quadratic

function of the control pointsPi, the whole goal function is a quadratic function of the

control pointsPi. The updated control pointsPi can be computed by solving a linear

system of equations. Moreover, since each variable sample point P (uk, vk) is only in-

fluenced by a small number of control points, the matrix for the resulting linear system

of equations is sparse. So, in the implementation, instead of storing the whole matrix,

a sparse data structure [55] is used. After that, instead of using some direct methods,

we use an iterative method, the conjugate gradient (CG) method [45, 56–60], to solve

the equation. Then the positions of the control points of thesubdivision surface are

updated accordingly.

3.7 Error Evaluation

After the control points have been updated, the maximum error Em and root-mean-

square errorErms are evaluated.Em is defined by the maximum of the distances of all

the sample pointsP (uk,0, vk,0) on the fitting surfaceS to the target shapeΓ, i.e.

Em = max
k

{||P (uk,0, vk,0) − R(sk, tk)||2}.

Erms is defined as:

Erms =

[

1

N

∑

k

||P (uk,0, vk,0) − R(sk, tk)||
2
2

]
1

2

.

If Erms falls below a pre-specified error threshold, the fitting process can be termi-

nated. Otherwise, the control mesh needs to be refined.

(Erms can roughly reflect the visually-perceived error. IfErms is small, the visually-

perceived errors for most regions should be small. On the other hand, ifErms is large,
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the visually-perceived errors for most regions should be large. If Em is much larger

thanErms, some regions are likely to have relatively larger visually-perceived error

than other regions. The reason is the lack of degrees of freedom in those regions

which need local subdivisions.)

3.8 Control Mesh Refinement

WheneverEm stops getting improved, new control points are inserted in the regions

of large errors so as to increase degrees of freedom for better fitting.

Then, the fitting process will continue from the step ”sampling on the active subdivi-

sion surface”.



Chapter 4

Implementation Issues

In this chapter, we discuss some implementation issues in various steps of the fitting

procedure.

4.1 Curvature Pre-computation

The curvature information of the target shape is required inSDM. As described in

the previous chapter, this information is pre-computed forefficient access later. We

employ the following simple method for our purpose. For a given target pointRi, its

neighboring pointsRn(i,j) are identified. To do this, the neighborhood size, which de-

pends on the sampling density of the point cloud, needs to be determined. The process

of neighboring points identification is speeded up by the useof an octree for the target

points. LetRc,i denote the centroid of the neighboring points. Then, the principal

curvature directions and the normal direction are computedas the eigenvectors of the

covariance matrixCV given by

CV =
∑

j

(Rn(i,j) − Rc,i)(Rn(i,j) − Rc,i)
T .

After that, we fit a quadratic polynomial (in the form ofz = k1x
2 + k2y

2) to the points

Rn(i,j) in the local coordinate system formed with the principal curvature directions

and the normal direction atRc,i. With the coefficientsk1 andk2 determined, the prin-

cipal curvatures are simply2k1 and2k2. Besides this simple approach, there exist other

methods. For example, Goldfeather et al. [61] proposed for estimating curvatures and

principal directions from point clouds using a cubic-orderalgorithm.

18
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4.2 Distance Field

When the equation for minimizing the goal function is set up,foot point projection

is required. To improve the efficiency at run time, we computean adaptive distance

field of the target shape in preprocessing using the idea proposed in [62]. During

the optimization process, the distance for a sample pointvk,0 is computed by trilinear

interpolation from the stored values in the smallest node where the sample point is

located. Similar pre-computation technique of the distance field has been used in [50].

Figure 4.1 shows an adaptive distance field for the ball joint.

Figure 4.1: An adaptive distance field for a ball joint.

4.3 Initial Mesh Generation

To start the optimization process, an initial control mesh is required. One approach

is to construct an octree partition of the point cloud with uniform cell size. Then, a

mesh is obtained using the Marching Cubes algorithm [63]. The cell size of the octree

is small enough so that the resulting mesh has the same topology as the target point

cloud. To capture small features of a target shape, the Marching Cubes algorithm can

be applied with a sufficiently small cell size to obtain a dense initial mesh before sim-

plifying the mesh adaptively to reduce the total number of triangles [64].

Schaefer et al. proposed Dual Marching Cubes approach [52].In our implementation,

we follow this approach since it is an adaptive approach and also it does not require

extra cracks-filling process. Initially, an octree is built. During the generation of the
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octree, whether a cell needs further subdivision depends onthe residual value of a

QEM-like quadratic error function [64]. (The function is described below shortly.) If

the residual value of a node exceeds a threshold value, the node is further subdivided

into eight children. In this way, the sizes of the leaf nodes are not of uniform size.

Next, one feature point is determined in each octree cell viaoptimizing a QEM-like

quadratic functionQD(·). Specifically, inside each cell, the function to be optimized

has the form:

QD(w, p) =
∑

i

(w − Gi(p))2

1 + ‖ 5 d(pi)‖2
, (4.1)

whered(·) is the cost function in the cell (in our case, the distance function), p is the

feature point to be found,w is the value ofd(·) at p andGi(·) is a function defined at

pi:

Gi(p) = 5d(pi)
T (p − pi), (4.2)

wherepi are sample points used for forming the quadratic function for optimization.

In our implementation,d(·) is set to be the signed distance function and the corners of

the octree cells are taken to bepi.

Since the feature point of a cell should be inside the cell or on the boundary of the

cell, constrained optimization is carried out. We call the OptSolve++ library for the

optimizations. After that, a dual grid is constructed usingthe feature points in the oc-

tree cells. Finally, the initial mesh is generated by referencing the lookup table (used

in the ordinary Marching Cubes algorithm) for each cell in the dual grid. Figure 4.2

illustrates the procedure for the dual marching cubes algorithm. Figure 4.3 shows the

octree and the dual grid for a horse.

Another approach is to model small details by adding a displacement map over a

smooth surface [65]. The visual output from this approach isimpressive but it does

not meet our goal of computing a complete surface representation for a point cloud.

4.4 Efficient Point Sampling on Subdivision Surface

From the formulation of the goal function, sample points on the subdivision surface are

required. Given the control pointsPi, the task is to evaluate sample pointsP (uk,0, vk,0).

According to the essence of subdivision surface, sample points on the subdivision

surface can be obtained by applying the subdivision rule repeatedly on the control

mesh which is defined initially by the control pointsPi. However, it is not clear how
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Build an octree
for the target

Construct a dual
grid for the octree

Locate features
in octree cells

Form the mesh by
referencing the
marching cubes

lookup table

Figure 4.2: Procedure for the Dual Marching Cubes Method.

Figure 4.3: An octree and a dual grid for a horse.
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to evaluate the particular pointP (uk,0, vk,0) with the parametersuk,0 andvk,0 before

Stam devised his approach in [53, 54]. In his approach, giventhe subdivision matrix

(determined by the subdivision scheme), the eigenstructure of the subdivision matrix is

analyzed. With the pre-computed coefficients of the eigenbasis functions (these need

to be computed once for a subdivision scheme), the sample point P (uk,0, vk,0) can be

computed efficiently by:

P (uk,0, vk,0) = PT b̂(uk,0, vk,0), (4.3)

whereP = {Pi} is the control points of the subdivision surface andb̂(·) stores the

eigenbasis functions.

In our implementation, we follow Stam’s approach for samplepoints evaluation on the

subdivision surface.

4.5 Indexed Storage for Sparse Matrices

Since each sample point on the subdivision surface is just a linear combination of a few

control points, the matrix for solving the linear system of equations is sparse. In order

to reduce the storage for zero elements and the computation time for the matrix oper-

ations, an indexed storage, instead of the whole matrix, is used. We apply the indexed

storage described in [55]. It is a row-indexed scheme, in which two one-dimensional

arrays are used. All the diagonal elements, including zero elements, are stored. But,

for off-diagonal elements, only non-zero elements are stored. Therefore, the storage

size required by this row-indexed scheme is roughly two times the number of non-zero

elements in the matrix. This scheme contributes a large reduction from the full matrix

representation for a sparse matrix.

This sparse representation is simple for a matrix to multiply itself or its transpose by a

vector to its right.

4.6 Equation Solving using the Conjugate Gradient Method

Once the linear system of equations for minimizing the goal function has been setup,

it can be solved by applying direct methods such as Gaussian elimination or Cholesky

decomposition. However, these methods are expensive especially for problems of large
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dimensions. For example, both Gaussian elimination and Cholesky decomposition

costO(n3) if the number of equations isn.

The conjugate gradient method (CG) is a well-known iterative method [45,56–60] that

can be used to solve linear systems of which the coefficient matrices are symmetric

and positive definite. Specifically, the function to which the CG method applies should

have the form:

f(x) =
1

2
xT Ax − bT x, (4.4)

whereA is symmetric and positive definite.

Given an initial guessx0, iteratesxi are generated according to the following formulae:

xi+1 = xi + σipi, (4.5)

ri+1 = ri − σiApi, (4.6)

σi =
rT
i ri

pT
i Api

, (4.7)

pi+1 = ri+1 + ςipi, (4.8)

and

ςi =
rT
i+1ri+1

rT
i ri

. (4.9)

In the above formulae,pi is the search direction for theith iteration and it can be veri-

fied easily thatri is the residue (b − Axi) for theith iteration. Initially,r0 = b − Ax0

andp0 = r0.

Given the directionpi, the new iterate is generated by moving the current iterate along

this direction by a step sizeσi. σi is obtained by a one-dimensional minimization.

df(xi + σipi)

dσi

= pT
i Axi + σip

T
i Api − pT

i b. (4.10)

After settingdf(xi+σipi)
dσi

to zero (a necessary condition forf(xi + σipi) to have a mini-

mum), we have,
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σi =
pT

i ri

pT
i Api

. (4.11)

And also,ςi is determined such thatpi+1 is orthogonal to allApj andrj , wherej < i.

To summarize, the vectors in the CG method have the followingproperties:

pT
i Apj = 0, ∀i 6= j;

rT
i rj = 0, ∀i 6= j;

and

rT
i Api = pT

i Api.

From the above properties and for the reason of computational efficiency,σ is com-

puted using Equation 4.20 rather than Equation 4.11 (rT
i ri needs to be computed any-

way). It can be observed that only matrix-vector multiplications and inner-products are

required in the CG method. Matrix-vector multiplications are carried out efficiently

since the matrix involved is a sparse matrix and is stored in an indexed structure [55]

(described in the previous subsection).

Theoretically, the maximum number of iterations needed is bounded by the number

of distinct eigenvalues of the matrixA [57, 59, 60]. More specifically, the number of

iterations depends on the distribution of the eigenvalues of the coefficient matrix. In

general, the performance for the CG method is better for coefficient matrices that have

clustered eigenvalues distribution than coefficient matrices that have uniform eigen-

values distribution.

The coefficient matrix for the linear system is determined bythe problem. But, in order

to improve the convergence rate of the CG method, a technique, called precondition-

ing, can be applied. The idea is to pre-multiply another matrix to the original matrix

so that the modified problem, of which the coefficient matrix has a better structure

from the viewpoint of the CG method, can be solved in a more efficient way. A simple

way to construct a matrix for preconditioning, also known asJacobi preconditioning,
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is to use a diagonal matrix of which the diagonal elements arethe corresponding ele-

ments of the original coefficient matrix [56]. For preconditioning, the substitution for

x̂ = M1/2x is made and Equation 4.4 becomes:

f(x̂) =
1

2
x̂T (M−T/2AM−1/2)x̂ − (M−T/2b)T x̂. (4.12)

From the implementation point of view, the modification for incorporating precondi-

tioning is minimal. An additional solving of the following equation is needed:

Mwi = ri, (4.13)

whereM is the matrix for preconditioning.

Then, some of the original formulae are modified accordinglyas follows:

σi =
wT

i ri

pT
i Api

, (4.14)

pi+1 = wi+1 + ςipi, (4.15)

and

ςi =
wT

i+1ri+1

wT
i ri

. (4.16)

The CG method works for the problems that have symmetric positive definite coeffi-

cient matrices. For problems that do have non-symmetric matrices, one approach is to

solve the normal equation instead of the original problem (i.e. to solveAT Ax = AT b

instead of solvingAx = b). This approach is sometimes known as the CGNR method

(Conjugate Gradient Method on the Normal Equations) [56]. Although the new coef-

ficient matrixAT A is guaranteed to be symmetric, its condition number doublesthat

of the original matrixA. This has negative impact on the convergence rate of the opti-

mization process and the accuracy of the solution.

Alternatively, in order to solve the problems that have non-symmetric coefficient ma-

trices, the bi-conjugate gradient method (biCG) [56] can beapplied. The iterative for-

mulae are similar to those in the CG method, with some additional vectors. Initially,

p0 = p̃0 = r0.
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xi+1 = xi + σipi, (4.17)

ri+1 = ri − σiApi, (4.18)

r̃i+1 = r̃i − σiA
T p̃i, (4.19)

σi =
rT
i r̃i

p̃T
i Api

, (4.20)

pi+1 = ri+1 + ςipi, (4.21)

p̃i+1 = r̃i+1 + ςip̃i, (4.22)

and

ςi =
rT
i+1r̃i+1

rT
i r̃i

. (4.23)

Regarding the doubling of the condition number of the coefficient matrix in the CGNR

method, the biCG method is preferable to the CGNR method. Similar to the case in

the CG method, preconditioning can be applied to the biCG method to improve its

performance. Practically, the biCG method works well in most cases. However, there

does not exist much information about the convergence rate of the biCG method in the

literature.

In our fitting procedure, one of the critical steps is to solvethe linear system of equa-

tions for minimizing the goal function. With the use of the sparse data structure (de-

scribed in the previous section) and the conjugate gradientmethod, the linear system is

solved efficiently. When implementing the conjugate gradient solver, we take [55] as

reference. The conjugate gradient solver is terminated when the relative error,‖b−Ax‖
‖b‖

,

is less than10−6. In most cases, the number of iterations by the CG solver is far less

than the number of variables. In order to avoid the CG solver from running infinitely,

the maximum number of iterations is set to the maximum of200 and the double of

the number of variables. We choose the numbers based on the experience gained from

experiments. It is a balance between efficiency and accuracyfor solving the equations.
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4.7 Smoothing Term

In this section, the smoothing termFs in the goal function is described. The objective

of the smoothing term is to increase the smoothness of the surface and discourage

self-intersection. Following [20], the smoothing term in Equation 3.1 is defined by

Fs =
1

n

n
∑

i=1

V (Pi)
T V (Pi), (4.24)

wherePi, i = 1, 2, . . . , n, are the control points andV (·) is a discretized version of

Laplacian.V (·) is defined as:

V (Pi) =
1

deg(Pi)

∑

j

U(Pn(i,j)) − U(Pi), (4.25)

andU(·) is defined as:

U(Pi) =
1

deg(Pi)

∑

j

Pn(i,j) − Pi, (4.26)

wheredeg(Pi) is the degree ofPi andPn(i,j) is thejth neighbor ofPi.

It is not trivial to choose an appropriate value for the coefficientλ for Fs. If λ is too

small, the term will have little influence and self-intersection may occur. On the other

hand, ifλ is too large, the fitting result may not be acceptable since the fitting surface

will be too rigid to give small fitting errors. In our experiments, the initial value for

λ is set to be0.001. As the optimization proceeds,λ is reduced gradually at different

rates for different target shapes.

4.8 Local Subdivision

When the result of the approximation is not as good as expected due to the lack of the

degree of freedom provided by the current control points, new control points need to

be inserted. Instead of applying the subdivision rule to allthe triangles, we perform

subdivisions only to the triangles that have large errors. This is referred to aslocal

subdivision.
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During the fitting process, the error between the subdivision surface and the target

shape is measured so that regions with relatively large fitting errors are identified. The

faces in these regions are then subdivided in a 1-to-4 manner(see Figure 4.4). To

avoid undesirable T-vertices, the neighboring triangles are split, following the Red-

Green Splitting scheme [66].

Figure 4.4: One triangle is split into four triangles. Neighboring triangles are also split.

After local subdivision, if the fitting errors in most other regions are already acceptable,

only the newly added points and their neighboring vertices are treated as variables and

optimized. This saves computation time by avoiding solvinga much larger linear

system of equations. Since the optimized problem has been altered when new control

points are inserted via local subdivisions, our fitting process is indeed a multi-staged

optimization.



Chapter 5

Optimization: Surface Fitting

In this chapter, we first describe some fundamentals in the field of optimization [45–

47, 56, 58, 59, 67–70]. Then, we will relate them with different distance optimization

methods used in the problem of fitting subdivision surfaces to unorganized points.

5.1 Optimization Basics

In an optimization problem, values of the valuables in the goal function are being

modified during the optimization process such that the goal function is minimized.

In this section, several approaches for tackling optimization problems are described.

Here, the goal functionf(x) is assumed to be twice-differentiable.

5.1.1 Necessary and Sufficient Conditions for a Local Minimum

In this section, the necessary and sufficient conditions fora local minimum are dis-

cussed. We are dealing with unconstrained optimizations, meaning that no additional

constraints are made on the variables.

Necessary Condition:Given a goal functionf(x), 5f(x∗) must be zero iff(x∗) is a

local minimum off(x).

Using Taylor’s expansion, we can expandf(x) aroundx∗:

f(x∗ + δ) = f(x∗) + δT 5 f(x∗ + θδ), (5.1)

whereδ is a modification vector andθ ∈ (0, 1).

29
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If 5f(x∗) 6= 0, by continuity, there existsθ 6= 0 such that5f(x∗ + θδ) 6= 0. Then,

there exists a modification vectorδ such thatδT 5 f(x∗ + θδ) < 0. In that case,

f(x∗ + δ) − f(x∗) < 0 and it means thatf(x∗) is not a local minimum.

However, it cannot be concluded thatf(x∗) is a local minimum off(x) if it is just

known that5f(x∗) = 0. 5f(x∗) = 0 is also true whenf(x∗) is a local maximum or

a saddle point off(x).

Sufficient Condition: Given a goal functionf(x), if 5f(x∗) = 0 and52f(x∗) is

positive definite, thenf(x∗) is a local minimum off(x).

Using Taylor’s expansion again, and one more term is expanded:

f(x∗ + δ) = f(x∗) + δT 5 f(x∗) +
1

2
δT 52 f(x∗ + θδ)δ, (5.2)

whereδ is a modification vector andθ ∈ (0, 1).

Since5f(x∗) = 0,

f(x∗ + δ) − f(x∗) =
1

2
δT 52 f(x∗ + θδ)δ. (5.3)

Since52f(x∗) is positive definite, and by continuity,52f(x∗+θδ) is positive definite.

Then,δT 52 f(x∗ + θδ)δ > 0, ∀δ. Consequently,f(x∗ + δ)− f(x∗) > 0, ∀δ. In other

words,f(x∗) is a local minimum off(x).

5.1.2 The Newton Method

Given a goal functionf(x) and the current valuexc, which is assumed to be near a

local minimum off(x), the idea of the Newton method is to compute the next iterate,

x+, as a minimizer of the local quadratic modelmc(x) (an approximant obtained by

Taylor’s expansion up to the2nd order term) off(x) aboutxc.

mc(x) = f(xc) + 5f(xc)
T (x − xc) +

1

2
(x − xc)

T 52 f(xc)(x − xc). (5.4)

Computing the gradient of Equation 5.4, we have:

5mc(x) = 5f(xc) + 52f(xc)(x − xc). (5.5)

Then,x+ is computed as the solution of5mc(x) = 0. So,

x+ = xc − (52f(xc))
−1 5 f(xc). (5.6)
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In practice, the inverse of the Hessian,(52f(xc))
−1, is not computed and the steps,

x+ − xc, is solved using the equation:

52f(xc)s = −5 f(xc). (5.7)

After that,

x+ = xc + s. (5.8)

If xc is too far away from a local minimizer,52f(xc) can have negative eigenvalues

and is not positive definite. As described in the previous section, the sufficient condi-

tion for a local minimum is that the Hessian needs to be positive definite. Therefore,

whenxc is too far away from a local minimizer, the quadratic model may not have lo-

cal minima and the Newton method may not converge to a local minimum. For a value

xc that is close to a local minimum, the Newton method gives quadratic convergence.

5.1.3 The Gauss-Newton Method

In the Newton method, the Hessian, which can be expensive to compute, is required

for formulating the local quadratic model. In this section,another method for tackling

the optimization problem, called the Gauss-Newton method,is described.

Consider a goal functionf(x) of a nonlinear least squares problem that is in the form:

f(x) =
1

2

∑

k

rk(x)T rk(x). (5.9)

In the Newton method, the Hessian of the goal function is computed as follows:

52f(x) =
∑

k

5rk(x) 5 rk(x)T +
∑

k

rk(x) 52 rk(x) (5.10)

In the Guass-Newton method, the second-order term,52rk(x), is discarded and the

Hessian is approximated as follows:

52f(x) ≈
∑

k

5rk(x) 5 rk(x)T . (5.11)

The process of the Gauss-Newton method is as the same as that of the Newton method

with the Hessian,52f(xc), replaced by
∑

k 5rk(xc) 5 rk(xc)
T .

For zero residual problems,rk(x) = 0 and therefore the second-order term in Equa-

tion 5.10 vanishes. In these cases, the Gauss-Newton methodis just identical to the
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Newton method. The motivation for the Gauss-Newton method is that the second-

order term might be negligible for small residual problems.

The advantage of the Gauss-Newton method is that the computational cost is smaller

when comparing with the Newton method since the second-order terms are discarded

in the Gauss-Newton method. The Gauss-Newton method works well for zero or small

residual problems. For zero residual problems, like the Newton method, the Gauss-

Newton method exhibits quadratic convergence.

However, the Gauss-Newton method works poorly for large residual problems because

the Hessian is poorly approximated by simply discarding thesecond-order terms in

those situations.

5.1.4 The Steepest Descent Method

In the Newton method and the Gauss-Newton method, the Hessian of the goal func-

tion or its approximant is required. There exists a method, called the steepest descent

method, in which no computation of the Hessian is needed. Only the gradient of the

goal function is involved.

Given a goal functionf(x) and the current valuexc, the next valuex+ is being found

such thatf(x+) < f(xc). A direction is called a descent direction if the goal function

valuef(x) decreases whenx is displaced along that direction for a reasonably small

step size. Atxc, the steepest descent direction is−5 f(xc), which is the negative of

the gradient atxc. The direction−5 f(xc) is really a descent direction ifxc is not a

stationary point (a stationary point refers to a local minimum, a local maximum or a

saddle point; andxc is a stationary point if and only if5f(xc) = 0).

The iterative formula for the steepest descent method is as follows:

x+ = xc − α 5 f(xc), (5.12)

whereα, to be determined by a line search algorithm, is the step sizealong the steepest

descent direction.

Although there is no need to compute or approximate the Hessian, the steepest descent

method can be recognized as the simplest form of the Newton-type method where the
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iterative formula can be obtained by replacing52f(xc) on the left hand side of Equa-

tion 5.6 by 1
α
I, whereI is the identity matrix. From another point of view, the Hessian

is approximated by1
α
I.

The steepest descent method is simple for implementation but is known to give only

linear convergence [71].

5.1.5 The Levenberg-Marquardt Method - a Trust Region Method

As described in the previous subsections, the three methods(the Newton method, the

Gauss-Newton method and the steepest descent method) have their own advantages

and shortcomings. When the current estimate is close to a local minimum, the Newton

method gives quadratic convergence. However, computationthe Hessian, which is of-

ten expensive, is required in the Newton method. The Gauss-Newton method reduces

the computation time by discarding the second-order terms when approximating the

Hessian. But, the Gauss-Newton method works satisfactorily for zero residual prob-

lems and small residual problems only. The steepest descentmethod does not require

the computation of the Hessian and does converge for large residual problems. How-

ever, the steepest descent method only has linear convergence. In this subsection, a

regularized version of the Gauss-Newton method, so called the Levenberg-Marquardt

Method (the LM method) [47, 59, 67, 68, 72], which is supposedto be robust enough

to ensure global convergence, is described.

The essence of the LM method is that the local model is only trusted within a neigh-

borhood that falls within a limited range around the currentpointxc. It means that the

step sizes for an iteration is bounded, and this is formally defined by the constraint

‖s‖ ≤ 4k. The value of4k depends on the degree of the agreement between the

local model and the actual goal function. By using the methodof Lagrange multipli-

ers, the original constrained optimization has been transformed into an unconstrained

optimization. The steps can be computed by solving the following equation:

(
∑

k

5rk(x) 5 rk(x)T + νcI)s = −5 f(xc), (5.13)

whereνc is the LM parameter which is adjusted at each iteration.

Comparing the above equation with that of the Newton method (Equation 5.6), it can
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be noticed that the Hessian of the goal function is approximated as follows:

52f(x) ≈
∑

k

5rk(x) 5 rk(x)T + νcI (5.14)

For all values ofνc, the matrix
∑

k 5rk(x) 5 rk(x)T + νcI is positive definite. When

νc is close to zero, the matrix is dominated by
∑

k 5rk(x)5 rk(x)T , which makes the

LM method close to the Gauss-Newton method. Whenνc is a large value, the matrix is

dominated by the identity matrixI, which makes the step close to the steepest descent

direction.

During the optimization process, a value, called the gain ratio, is monitored. The gain

ratiogr is the ratio of the decrease in the actual goal function to thedecrease predicted

by the local model.

gr =
f(xc) − f(xc + s)

L(0) − L(s)
(5.15)

whereL is the local quadratic model used to approximate the goal function. After

some mathematical manipulations, the gain ratiogr becomes:

gr =
2(f(xc) − f(xc + s))

sT (νcs −5f(xc))
(5.16)

If the gain ratio is small, which means that the current modelis a poor approximation

to the goal function,νc will be increased so that the next step is closer to the steepest

descent direction and the step size is reduced. If the gain ratio is high, which means

that the current model is a good approximation to the goal function, νc will be de-

creased so that the next step is closer to a Gauss-Newton step, which converges much

faster. A particular way to modify the value ofνc according togr is described in [69].

By monitoring the agreement between the local model and the actual goal function,

this approach attempts to share the advantages of both the steepest descent method

and the Gauss-Newton method. Comparing with the Gauss-Newton method, both the

direction and the step size are modified when the LM method is applied. In the op-

timization field, the LM method is often implemented as a trust-region strategy. The

size of the trust-region depends on the agreement between the current model and the

actual goal function.

The effectiveness of the LM method in fitting subdivision surfaces to point clouds is

observed in the experiments in section 6 in the next chapter.
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5.1.6 The Armijo Method - a Line Search Method

For guaranteeing global convergence, line search method [47, 59, 67, 68, 72] is an al-

ternative approach to trust region method described in the previous section.

After a moving direction has been determined by a certain optimization method such

as PDM, SDM or TDM, the step size needs to be decided explicitly by performing a

line search to guarantee convergence rather than just having steps of fixed length all

the time. The Armijo method provides one way to perform this task.

Briefly speaking, the following condition, called the sufficient condition [47,68], needs

to be satisfied:

f(xc) − f(xc + αδ) ≥ −α2α 5 f(xc)
T δ, (5.17)

whereα is the step size,δ is the moving direction andα2 is a parameter smaller than

1.

The step sizeα can be set to1 initially and is halved until the above sufficient condi-

tion is satisfied.

With the use of the step size control, the stability of the optimization process is better.

Similar to the LM method, extra goal function and gradient evaluations are required

and these increase the computational time. Different from the LM method in which

both the direction and the step size are modified, only the step size is modified in the

Armijo method.

The effectiveness of the Armijo method in fitting subdivision surfaces to point clouds

is observed in section 6 in the next chapter.

5.2 Fitting Subdivision Surface to Point Cloud – from

the Viewpoint of Optimization

In this section, we would like to relate the optimization basics described in the previ-

ous section to various methods for solving the subdivision surface fitting problem.
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First, some notations are defined for ease of the discussion.A fitting subdivision sur-

faceS is given for fitting the target shapeΓ. S is defined by control pointsPi, i =

1, 2, . . . , n while Γ is assumed to be twice differentiable.P (uk, vk), k = 1, 2, . . . , N ,

which are linear combinations of the control pointsPi, are sample points onS and

R(sk, tk) are their corresponding foot points onΓ, whereuk, vk andsk, tk are the sur-

face parameters of the sample points and the foot points respectively. Consider that the

control pointsPi of S are modified with a displacement vectorD = (DT
1 , DT

2 , . . . , DT
n )T

in each optimization step. Then the sample points on the modified surface areP (D; uk, vk)

and their corresponding foot points onΓ areR(s(k;D), t(k;D)). For clarity,P (D; uk, vk)

andR(s(k;D), t(k;D)) are denoted byP andR respectively. Sometimes,P − R is

denoted byEk and 1
2
ET

k Ek is denoted byfk.

In the subdivision surface fitting problem,D needs to be computed such that the goal

function

f =
1

2

N
∑

k=1

(P − R)T (P − R) (5.18)

is minimized, and subjected to the constraints:

(P − R)T ∂R

∂sk
= 0 (5.19)

and

(P − R)T ∂R

∂tk
= 0. (5.20)

Note that the constraints are added since they are the necessary conditions for a mini-

mum off , which can easily be verified by differentiation. Geometrically, it means that

the vectorP − R must be normal to the target shape atR.

Since the gradient offk is required in several methods, we include its computation

here.

5Dfk =

(

∂P

∂D
−5Dsk

∂RT

∂sk
−5Dtk

∂RT

∂tk

)

Ek

=
∂P

∂D
Ek (due to the constraints 5.19 and 5.20) (5.21)

Depending on the context,5Dfk will also be written as∂P
∂D

T
(P − R).
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5.2.1 PDM – the Gradient Descent Method

In this subsection, we are going to show that PDM is the gradient descent method. In

PDM, the PD error function is used.

The derivation starts from the quadratic local model (obtained by expanding up to the

second order term using Taylor’s expansion) at the current point Pc. In the derivation

below,52
Df(xc) is replaced by the matrix∂P T

∂D
∂P
∂D

.

fk(Pc) + 5Dfk(Pc)
TD +

1

2
DT 52

D fk(Pc)D

= fk(Pc) + 5Dfk(Pc)
TD +

1

2
DT ∂P T

∂D

∂P

∂D
D

=
1

2
(Pc − Rc)

T (Pc − Rc) + (Pc − Rc)
T ∂P

∂D
D +

1

2
DT ∂P T

∂D

∂P

∂D
D

=
1

2
(Pc +

∂P

∂D
D − Rc)

T (Pc +
∂P

∂D
D − Rc)

=
1

2
(P (Pc;D) − Rc)

T (P (Pc;D) − Rc)

=
1

2
PD error term (Equation 2.2), (5.22)

wherePc are the points for the current iteration andRc are the foot points ofPc.

Hence PDM is the gradient descent method. This is a typical optimization approach

for solving a separable nonlinear least squares problem andis known to have linear

convergence [71].

It is possible to show that PDM converges linearly in anotherway:

Given a fitting subdivision surfaceS defined byn control pointsPi ∈ E3 andm data

pointsRk ∈ E3, PDM minimizes the goal functionf(P,U) with variablesP andU in

the Euclidean spaceE3n+2m spanned byP andU , whereP = {Pi}n
i=1 are the control

points of the fitting subdivision surface andU = {sk, tk}
m
k=1 are the parameter values

associated theRk.

PDM has the following two steps that are carried out in iteration: (1) For fixed pa-

rameter valuesU0 = {sk,0, tk,0} and control pointsP0 = {Pi,0}, the control points

P1 = {Pi,1} are found such that the quadratic functionf(P,U0) is minimized. This is
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done by solving a linear system of equations; (2) For the control pointsP1 produced

in step 1, the parameter valuesU1 = {sk,1, tk,1} are found such that the error function

f(P1,U) is minimized. Note thatf(P,U) is not, in general, quadratic inU ; therefore

one normally computes the foot pointsRk on the target shape for the optimization in

step (2).

The above steps of PDM can also be formulated as follows. First we need some no-

tation. The spaceE3n+2m = {W}, whereW = (P,U)T , can be decomposed as the

direct sum of subspaceE3n
P = {P} of dimensions3n and subspaceE2m

U = {U} of

dimensions2m. Letej ∈ E3n+2m be thej-th unit basis vector,j = 1, 2, . . . , 3n+ 2m,

i.e. all components ofej are zero, except that itsj-th component is 1. LetYP =

{e1, e2, . . . , e3n} be the basis vectors spanningE3n
P . LetYU = {e3n+1, e3n+2, . . . , e3n+2m}

be the basis vectors spanningE2m
U . LetL(Y ) be the linear space spanned byk linearly

independent vectorsY = {y1,y2, . . . ,yk}, where they` ∈ E3n+2m, ` = 1, 2, . . . , k.

Let 〈Q0;L(Y )〉 ⊂ E3n+2m denote thek-dimensional Euclidean subspace obtained

by attaching the linear spaceL(Y ) to a pointQ0 ∈ E3n+2m, i.e. 〈Q0;L(Y )〉 =

{Q0 + Y X}, whereX = (x1, x2, . . . , xk)
T ∈ Ek. From a starting pointW0 =

(P0,U0)
T ∈ E3n+2m, PDM first computes a minimizer̃W1 = (P1,U0)

T of f(P,U0)

in the subspace〈W0;L(YP )〉. Then PDM computes a minimizerW1 = (P1,U1)
T of

f(P1,U) in the subspace〈W̃1;L(YU)〉. Then, fromW1, the above two steps are iter-

ated to computeW2 = (P2,U2)
T , and so on.

To study the convergence rate of PDM, it suffices to consider PDM in the neighborhood

of a local minimizer off(P,U); without loss of generality, suppose that the minimizer

is at the origin. It is well known from optimization theory that we just need to consider

the HessianH of f(P,U) at the origin. Suppose the minimizer under consideration is

strict, i.e. all eigenvalues ofH are positive. We consider the application of PDM to

optimizing the quadratic function

fH(P,U) = (P,U)H(P,U)T .

The minimizerW̃1 of fH(P,U0) in the subspace〈W0;L(YP )〉 can be found by mini-

mizing the quadratic function

fH,P0
= [W0 + YPXP ]T H [W0 + YPXP ]

with respect toXP ∈ E3n. It is easy to show that

W̃1 = [I − YP (Y T
P HYP )−1YPH ]W0.
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Similarly, starting fromW̃1, the minimizer offH in the subspace〈W̃1; YU〉 is given by

W1 = [I − YT (Y T
T HYT )−1YT H ]W̃1 = MW0

whereM = [I − YT (Y T
T HYT )−1YTH ][I − YP (Y T

P HYP )−1YP H ]. Iterating the above

two steps, we obtain

Wj = M jW0, j = 0, 1, 2 . . . ,

whereWj = (Pj,Uj)
T is the result produced at thej-th iteration of PDM. Hence,

PDM has a linear convergence. Iteration(Pj ,Uj)
T = M(Pj−1,Uj−1)

T does not pro-

duce(Pj ,Uj) = 0 in a finite number of steps if(P0,U0) is not in the null-space of

M . The actual convergence speed depends on the eigen-structure of H as well as the

relationship between(P0,U0) and the eigenvectors ofH.

5.2.2 TDM – the Gauss-Newton Method

In this section, we deal with the Gauss-Newton method. First, the goal function is

expressed as follows:

f(x) =
1

2

∑

k

r2
k(x), (5.23)

whererk(x) = ‖P − R‖.

It is clear thatfk(Pc) = 1
2
rk(Pc)

2, and

5Dfk = rk 5D rk

5Drk =
5Dfk

rk

. (5.24)

From Equation 5.21, we have:

5Drk =
∂P
∂D

Ek

rk

5Drk =
∂P

∂D

Ek

rk

5Drk =
∂P

∂D

(P − R)

‖P − R‖

5Drk =
∂P

∂D
N , (5.25)

whereN is the normal vector at the foot point on the target shape for thekth sample

point.
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Now we move on to show that TDM is the Gauss-Newton method. Thederivation

starts from the quadratic local model (obtained by expanding up to the second order

term using Taylor’s expansion) at the current pointPc. As discussed in the previous

section,52
Dfk(Pc) is approximated by5Drk(Pc)5D rk(Pc)

T , which is ∂P
∂D

NN T ∂P
∂D

T
.

The substitution is done at the second line in the following derivation.

fk(Pc) + 5Dfk(Pc)
TD +

1

2
DT 52

D fk(Pc)D

= fk(Pc) + 5Dfk(Pc)
TD +

1

2
DT ∂P

∂D
NN T ∂P T

∂D
D

=
1

2
(Pc − Rc)

T (Pc − Rc) + (Pc − Rc)
T ∂P

∂D
D +

1

2
DT ∂P

∂D
NN T ∂P T

∂D
D

=
1

2
(Pc − Rc)

TNN T (Pc − Rc) + (Pc − Rc)
TNN T ∂P

∂D
D +

1

2
DT ∂P

∂D
NN T ∂P T

∂D
D

=
1

2
(P +

∂P T

∂D
D − Rc)

TNN T (P +
∂P T

∂D
D − Rc)

=
1

2
(P (Pc;D) − Rc)

TNN T (P (Pc;D) − Rc)

=
1

2
((P (Pc;D) − Rc)

TN )2

=
1

2
TD error term (Equation 2.3), (5.26)

wherePc are the points for the current iteration,Rc are the foot points ofPc andN are

the normal vectors atRc.

Hence TDM is the Gauss-Newton method. In surface fitting problem, TDM works

well when the initial positions of the control points are close to the optimal positions

and the surface is really capable of fitting the target data well. In other words, it works

well for zero or small residual problems. However, TDM is notstable around large

curvature regions since the discarded terms in the approximant of the Hessian of the

goal function are indeed not negligible.

5.2.3 SDM – the Newton Method

In this subsection, we are going to show that SDM is the Newtonmethod. In SDM,

the SD error function is used.
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We first compute the derivative of5Dfk (Equation 5.21) and get the Hessian.

52
Dfk =

(

∂P

∂D

T

−
∂R

∂sk

5T
D sk −

∂R

∂tk
5T

D tk

)

∂P

∂D
+ ET

k

∂2P

∂D2

=

(

∂P T

∂D
−

∂R

∂sk

5T
D sk −

∂R

∂tk
5T

D tk

)

∂P

∂D
, (5.27)

whereET
k

∂2P
∂D2 = 0 sinceP can be expressed as a linear combination ofD.

From the constraints 5.19 and 5.20, we have the following twoequations:

0 = 5D

(

(P − R)T ∂R

∂sk

)

=

(

5Dsk
∂2RT

∂s2
k

+ 5Dtk
∂2RT

∂tk∂sk

)

(P − R) +

(

∂P

∂D
−5Dsk

∂RT

∂sk
−5Dtk

∂RT

∂tk

)

∂R

∂sk
(5.28)

and

0 = 5D

(

(P − R)T ∂R

∂tk

)

=

(

5Dtk
∂2RT

∂t2k
+ 5Dsk

∂2RT

∂sk∂tk

)

(P − R) +

(

∂P

∂D
−5Dtk

∂RT

∂tk
−5Dsk

∂RT

∂sk

)

∂R

∂tk
(5.29)

Without loss of generality, suppose thatR(sk, tk) is a local regular parameterization

of the target surfaceΓ such that∂R
∂sk

and ∂R
∂tk

are the unit vectors along the principal

directions of the target surface atR. Then, we have∂RT

∂sk

∂R
∂tk

= ∂RT

∂tk

∂R
∂sk

= 0. It follows

that

0 =

(

5Dsk
∂2RT

∂s2
k

+ 5Dtk
∂2RT

∂tk∂sk

)

(P − R) +

(

∂P

∂D
−5Dsk

∂RT

∂sk

)

∂R

∂sk
(5.30)

and

0 =

(

5Dtk
∂2RT

∂t2k
+ 5Dsk

∂2RT

∂sk∂tk

)

(P − R) +

(

∂P

∂D
−5Dtk

∂RT

∂tk

)

∂R

∂tk
(5.31)
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From (5.30) and (5.31), we get

5Dsk = −
∂P
∂D

∂R
∂sk

+ ∂2RT

∂tk∂sk

(P − R) 5D tk
∂2RT

∂s2

k

(P − R) − ∂RT

∂sk

∂R
∂sk

(5.32)

and

5Dtk = −
∂P
∂D

∂R
∂tk

+ ∂2RT

∂sk∂tk
(P − R) 5D sk

∂2RT

∂t2
k

(P − R) − ∂RT

∂tk

∂R
∂tk

(5.33)

Now, we make the following substitutions into (5.32) and (5.33): ∂R
∂sk

= T1, ∂R
∂tk

= T2 ,
∂2R
∂s2

k

= κ1N , ∂2R
∂t2

k

= κ2N , ‖P −R‖2 = d, whereκ1, κ2 are the principal curvatures at

R, T1, T2 are the unit tangent vectors along the principal directionsat R andN is the

unit normal vector atR. After the substitutions, we have:

5Dsk = −
∂P
∂D

T1 + ∂2RT

∂tk∂sk

(P − R) 5D tk

dκ1 − 1
(5.34)

and

5Dtk = −
∂P
∂D

T2 + ∂2RT

∂sk∂tk
(P − R) 5D sk

dκ2 − 1
(5.35)

Since∂RT

∂sk

∂R
∂tk

= 0, differentiating with respect tosk yields ∂2RT

∂s2

k

∂R
∂tk

+ ∂2RT

∂sk∂tk

∂R
∂sk

= 0.

Therefore,

∂2RT

∂sk∂tk

∂R

∂sk

= −
∂2RT

∂s2
k

∂R

∂tk
= −κ1N

TT2 = 0. (5.36)

Similarly,

∂2RT

∂sk∂tk

∂R

∂tk
= −

∂2RT

∂t2k

∂R

∂sk
= −κ2N

TT1 = 0. (5.37)

Substitute (5.34) and (5.35) into (5.28) and take (5.36) and(5.37) into consideration,

52
Dfk =

∂P

∂D

∂P T

∂D
+

∂P
∂D

T1T T
1

∂P T

∂D

dκ1 − 1
+

∂P
∂D

T2T T
2

∂P T

∂D

dκ2 − 1

=
∂P

∂D
(1 − T1T

T
1 − T2T

T
2 )

∂P T

∂D
+ dκ1

∂P
∂D

T1T
T

1
∂P T

∂D

dκ1 − 1
+ dκ1

∂P
∂D

T2T
T

2
∂P T

∂D

dκ2 − 1

=
∂P

∂D
NN T ∂P T

∂D
+

d

d − ρ1

∂P

∂D
T1T

T
1

∂P T

∂D
+

d

d − ρ2

∂P

∂D
T2T

T
2

∂P T

∂D
, (5.38)
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whereρ1 = 1
κ1

, ρ2 = 1
κ2

are the radii of curvature along the principal directions atR.

Note that the fact thatT1T T
1 + T2T T

2 + NN T = I has been used.

After computing52fk, we move on to prove that SDM is the Newton method. The

derivation starts from the quadratic local model (obtainedby expanding up to the sec-

ond order term using Taylor’s expansion) at the current point Pc. We have used the

fact that(Pc − Rc)
TT1 = (Pc − Rc)

TT2 = 0.

fk(Pc) + 5Dfk(Pc)
TD +

1

2
DT (52

Dfk(Pc))D

=
1

2
(Pc − Rc)

T (Pc − Rc) + (Pc − Rc)
T ∂P T

∂D
D +

1

2
DT (

∂P

∂D
NN T ∂P T

∂D
+

d

d − ρ1

∂P

∂D
T1T

T
1

∂P T

∂D
+

d

d − ρ2

∂P

∂D
T2T

T
2

∂P T

∂D
)D

=
1

2
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TNN T (Pc − Rc) + (Pc − Rc)
TNN T ∂P T

∂D
D +

1

2
DT ∂P

∂D
NN T ∂P T

∂D
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1

2

d
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DT ∂P
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T1T

T
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∂P T

∂D
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1
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d
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T2T
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∂P T
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D

=
1
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∂P T

∂D
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TNN T (Pc +
∂P T

∂D
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d
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DT ∂P
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T1T

T
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∂P T
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d
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DT ∂P
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T2T
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∂P T
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∂P T

∂D
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∂P T
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d
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+
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1

2

d

d − ρ2

[

(P (Pc;D) − Rc)
TT2

]2

=
1

2
SD error term (Equation 2.5), (5.39)

wherePc are the points for the current iteration andRc are the foot points ofPc.

From the above derivation, we can note that the SDM formula isa quadratic approxi-

mant of (5.18). SDM is indeed the Newton method with constraints.

5.3 Trajectories of the Iterates for PDM, TDM and SDM

In this section, we study the difference in the trajectoriesof the iterates during the

fitting processes in PDM, TDM and SDM. As described in the previous chapter, all

PDM, TDM and SDM follow the idea of separation of variables insolving the nonlin-

ear least squares problem. Foot point projection is involved in all the three methods.

But, the iterates for the three methods do not have the same type of trajectory.

The commonly used method, PDM, which is also called the alternating method, is

known to have linear convergence rate [33]. Figure 5.1 showsthe trajectory of the

iterates for PDM (in 2D case). It is a zigzag path. The minimizer of the function must

be on the bold curve (which represents the feasible solutionset). Vertical movements,

in which only the surface parameterss are modified and the control points are kept

unchanged, correspond to foot point projections. Horizontal movements, in which the

surface parameterss are kept unchanged and the control points are optimized, corre-

spond to the linear least squares problem. Vertical movements and horizontal move-

ments are repeated alternatively until the minimizer is found.

Although foot point projection is the common step in PDM, TDMand SDM, both

TDM and SDM have much faster convergence when compared with PDM. These facts

are also reflected in the trajectories of the iterates for these methods. Contrast to that

of PDM, the trajectories of TDM and SDM are no longer orthogonal zigzag paths.

Figure 5.2 shows the trajectory of the iterates for TDM (in 2Dcase). Again, the min-

imizer of the function must be on the bold curve. Vertical movements, in which only

the surface parameterss are modified and the control points are kept unchanged, cor-

respond to foot point projections. Then, for the step that solves the linear least squares

problem, the movement is along the tangent line formed at theiterate. TDM uses the
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s

PP
0

Minimum

Figure 5.1: PDM: Trajectory of the iterates in the optimization space (2D case)
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movement on the tangent line to approximate the movement on the solution curve. In

this step, both the surface parameters and the control pointsP are modified. Vertical

movements and movements along the tangent lines are repeated until the minimizer is

found.

s

PP
0

Minimum

Figure 5.2: TDM: Trajectory of the iterates in the optimization space (2D case)

Similarly, in SDM, there is a step for foot point projection,which is followed by a step

for solving a linear least square problem. The trajectory ofthe iterates for SDM in

2D case is similar to that shown in Figure 5.2. Figure 5.3 gives a 3D illustration. In

the step for foot point projection, only the surface parameterss andt are modified and

the control points are kept unchanged. In the figure, the yellow plane is the tangent

plane formed at the foot point. Then, for the step that solvesthe linear least squares

problem, the movement is made along the tangent plane. SDM uses the movement on
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the tangent plane to approximate the movement on the solution surface. The actual

movement on the tangent plane is guided by SDM’s approximation to the Hessian.

During this step, the variablesP , s andt are modified. Like TDM, vertical movements

and movements on the tangent planes are repeated until the minimizer is found.

Figure 5.3: SDM: Trajectory of the iterates in the optimization space

In conclusion, although PDM, TDM and SDM share similar practical procedures, the

trajectories of the iterates in the optimization space are indeed different in nature. The

zigzag path for PDM and the non-zigzag paths for TDM and SDM give some insights

about the difference in convergence rates of these methods.



Chapter 6

Experimental Results and Discussions

In this chapter, we present experimental results for comparing the convergence behav-

iors of different optimization methods. The time and error statistics for the examples

are also given. All experiments are conducted on a PC with Intel Xeon2.8 GHz CPU

and2.00 GB RAM. The machine that we use is a relatively high-end one but should

be affordable and reasonable. Our program can handle complex data models such as

Buddha (6.64, which consists of543652 points) using this machine.

6.1 Behaviors of Different Types of Optimization: PDM,

TDM, SDM and their Variants

In this section, some experiments are performed to compare the convergence behaviors

and stabilities of different optimization methods. Besides, the effectiveness of a trust

region strategy and a line search strategy is demonstrated.Although the target shapes

used in the experiments in this section are relatively simple, the observations made are

expected to be valid for more complex shapes.

6.1.1 Convergence Behaviors of PDM, TDM and SDM

Experiment A1 (Refer to Figures 6.1, 6.2)

This experiment investigates the convergence behaviors ofPDM, SDM and TDM. A

sphere, of which the radius is0.5, is used as a target data in this experiment. An initial

mesh, which contains50 control points, is obtained by subdividing a1 × 1 × 1 cube

using Loop’s scheme. No smoothing term is used. Figure 6.1 shows the target sphere,

the initial mesh, the optimized mesh and also the optimized subdivision surface. Fig-

48
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ure 6.2 shows the error curves for PDM, SDM and TDM.

Figure 6.1: Left: Target sphere and initial mesh (red lines); Middle: Optimized mesh

obtained by SDM (meshes obtained by PDM and TDM are similar and therefore are

not included here); Right: Optimized subdivision surface obtained by SDM
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Figure 6.2: Error curves for experimentA1

Experiment A2 (Refer to Figures 6.3, 6.4)

In this experiment, the target data used is an ellipsoid of which the radii are0.25, 0.5
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and1.0. The initial mesh is0.5 × 1.0 × 2.0 and consists of14 control points. No

smoothing term is used. Compared with experimentA1, the target shape does not

have uniform curvatures. Figure 6.3 shows the target ellipsoid, the initial mesh, the

optimized mesh and also the optimized subdivision surface.Figure 6.4 shows the er-

ror curves for PDM, SDM and TDM.

Figure 6.3: Left: Target ellipsoid and initial Mesh (red lines); Middle: Optimized

mesh obtained by SDM (meshes obtained by PDM and TDM are similar and therefore

are not included here); Right: Optimized subdivision surface obtained by SDM
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Figure 6.4: Error curves for experimentA2
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Observation: TDM and SDM converge faster than PDM with TDM and SDM have

similar convergence rates. Furthermore, different local minimums are obtained in

these methods.

From experimentsA1 andA2, it is observed that both TDM and SDM converge much

faster than PDM while TDM and SDM have similar performance. In experimentA1,

PDM takes67 iterations (4.668 s) to obtain anErms smaller than0.0005 while SDM

and TDM just take3 iterations (0.251 s) and1 iteration (0.06 s) respectively. In ex-

perimentA2, PDM takes50 iterations (0.791 s) to obtain anErms smaller than0.002

while SDM and TDM just take2 iterations (0.020 s) and1 iteration (0.010 s) respec-

tively. These experimental results can be predicted and explained by the theoretical

facts mentioned in the previous chapter that PDM is a gradient descent method, TDM

is the Gauss-Newton method and SDM is the Newton method.

6.1.2 Convergence Behaviors with Improper Initial Meshes

Experiment B1 (Refer to Figures 6.5, 6.6, 6.7, 6.8)

This experiment investigates the convergence behaviors ofPDM, SDM and TDM

when the initial mesh is not properly aligned with the targetshape. A sphere, of which

the radius is0.5, is used as a target data while a0.8×0.8×0.8 cube is used as an initial

mesh. The initial mesh has14 control points. Figure 6.5 shows the target shape and

the initial mesh. Figure 6.6 shows the meshes after the first iteration for PDM, SDM

and TDM. Figure 6.7 shows the optimized meshes for SDM and TDMas well as the

meshes for PDM after100 and1000 iterations. Figure 6.8 shows the error curves for

PDM, SDM and TDM.

Experiment B2 (Refer to Figures 6.9, 6.10, 6.11, 6.12)

This experiment investigates the convergence behaviors ofPDM, SDM and TDM

when the initial mesh is not properly aligned with the targetshape and also the control

points are not evenly distributed. A sphere, of which the radius is 0.5, is used as a

target data while a cone shape mesh, which consists of34 control points, is used as an

initial mesh. Figure 6.9 shows the target shape and the initial mesh. Figure 6.10 shows

the meshes after the first iteration for PDM, SDM and TDM. Figure 6.11 shows the

optimized meshes for SDM and TDM as well as the meshes for PDM after 100 and

1000 iterations. Figure 6.12 shows the error curves for PDM, SDM and TDM.
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Figure 6.5: Target sphere and initial mesh (red lines)

Figure 6.6: Mesh after the1st iteration. Left: PDM; Middle: SDM; Right: TDM

Figure 6.7: Left: Optimized mesh by SDM (the mesh obtained byTDM is similar and

is therefore not included here); Middle: Mesh for PDM after100 iterations; Right:

Mesh for PDM after1000 iterations
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Figure 6.8: Error curves for experimentB1

Figure 6.9: Target sphere and initial mesh (red lines)
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Figure 6.10: Mesh after the1st iteration. Left: PDM; Middle: SDM; Right: TDM

Figure 6.11: Left: Optimized mesh obtained by SDM (the mesh obtained by TDM is

similar and is therefore not included here); Middle: Mesh for PDM after100 iterations;

Right: Mesh for PDM after1000 iterations
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Figure 6.12: Error curves for experimentB2

Experiment B3 (Refer to Figures 6.13, 6.14)

This experiment investigates the convergence behaviors ofPDM, SDM and TDM

when the initial mesh is far away from the target shape and also the control points

are not evenly distributed. A sphere, of which the radius is0.5, is used as a target data

while an initial mesh1×1×3, which consists of14 control points, is used. Figure 6.13

shows the target sphere, the initial mesh, the optimized mesh and also the optimized

subdivision surface. Figure 6.14 shows the error curves forPDM, SDM and TDM.

Experiment B4 (Refer to Figures 6.15, 6.16)

This experiment investigates the convergence behaviors ofPDM, SDM and TDM

when the initial mesh is not properly aligned with the targetshape and also the control

points are not evenly distributed with respect to the target. A disc, of which the radii

are1, 1 and0.1, is used as a target data while an initial mesh , which consists of 14

control points, is used. The initial mesh is placed orthogonally to the target data. Fig-

ure 6.15 shows the target ellipsoid, the initial mesh, the optimized mesh and also the

optimized subdivision surface. Figure 6.16 shows the errorcurves for PDM, SDM and

TDM.
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Figure 6.13: Left: Target sphere and initial mesh (red lines); Middle: Optimized mesh

obtained by SDM (meshes obtained by PDM and TDM are similar and therefore are

not included here); Right: Optimized subdivision surface obtained by SDM
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Figure 6.14: Error curves for experimentB3
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Figure 6.15: Top Left: Target disc and initial mesh (red lines); Top Right: Optimized

mesh obtained by PDM; Bottom Left: Optimized mesh obtained by SDM; Bottom

Right: Optimized subdivision surface obtained by SDM
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Figure 6.16: Error curves for experimentB4

Observation: SDM converges successfully to the target shapes from improper initial

meshes while PDM converges slowly or even fails to converge in some cases. TDM

has the stability problem in some cases.

In experimentB1, it can be noticed that SDM and TDM have an obvious advantage

over PDM that the control points are able to have large displacements so that the poor

initial meshes do not hinder the fitting subdivision surfacefrom converging to the tar-

get shape. In experimentB2, it is observed that both SDM and TDM are capable of

re-distributing the control points efficiently while PDM issucked by the inappropriate

initial distribution of the control points. In experimentB3, the initial mesh is inten-

tionally made to be far away from the target along one direction. SDM has the best per-

formance among the three methods while TDM is unstable at thebeginning although

it still outperforms PDM. PDM takes36 iterations (0.651 s) to have anErms smaller

than0.0015 while SDM and TDM8 iterations (0.130 s) and17 iterations (0.270 s) to

achieve that. In experimentB4, PDM cannot move with large enough displacements

to overcome the poor initial configuration. TDM is unstable which can be explained

by the fact that TDM is the Gauss-Newton method and the discarded termr(x)52r(x)

in the Hessian becomes relatively significant whenr(x) is large.
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6.1.3 Convergence Behaviors with Far-away Initial Meshes

Experiment C1 (Refer to Figures 6.17, 6.18)

This experiment investigates the convergence behaviors ofPDM, SDM and TDM

when the initial mesh is quite far away from the target shape.An ellipsoid is used

as a target data in this experiment. The radii are0.25, 0.5 and1.0. An initial mesh of a

4.0 × 4.0 × 4.0 cube, which consists of14 control points, is used. No smoothing term

is used. Figure 6.17 shows the target ellipsoid, the initialmesh and also the optimized

subdivision surface. Figure 6.18 shows the error curves forPDM, SDM and TDM.

Figure 6.17: Left: Target ellipsoid and initial mesh (red lines); Middle: Optimized

mesh obtained by SDM; Right: Optimized subdivision surfaceobtained by SDM

Observation: TDM does not have a stable performance when the initial mesh is far

away. SDM outperforms PDM.

From experimentC1, it can be observed that SDM converges much faster than PDM

while TDM does not work in this example. PDM has anErms larger than0.002 after

500 iterations (9.160 s) while SDM just takes5 iterations (0.071 s) to obtain anErms

smaller than0.002. Similar to experimentB4, TDM does not work well for a far-away

initial mesh because of the large initial residue, which is predicted by the theory de-

scribed in the previous chapter.

6.1.4 Convergence Behaviors for Targets with Large Curvature

Regions

Experiment D1 (Refer to Figures 6.19, 6.20)
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Figure 6.18: Error curves for experimentC1

The objective of this experiment is to observe the fitting behaviors of PDM, SDM and

TDM when a target shape containing large curvature regions is to be fitted. Here, an

ellipsoid having higher curvatures is used as the target data. The radii are0.25, 0.5 and

4.0. The initial mesh is0.5 × 1.0 × 8.0. The number of control points in the initial

mesh is14. No smoothing term is used. Figure 6.19 shows the target ellipsoid, the ini-

tial mesh, the optimized mesh and also the optimized subdivision surface. Figure 6.20

shows the error curves for PDM, SDM and TDM.

Figure 6.19: Left: Target ellipsoid and initial mesh (red lines); Middle: Optimized

mesh obtained by SDM; Right: Optimized subdivision surfaceobtained by SDM

Experiment D2 (Refer to Figures 6.21, 6.22)
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Figure 6.20: Error curves for experimentD1

In this experiment, another ellipsoid is used as the target shape. The radii are0.125,

0.25 and4.0. The initial mesh is0.25 × 0.5 × 8. The number of control points in the

initial mesh is14. No smoothing term is used. Figure 6.21 shows the target ellipsoid,

the initial mesh, the optimized mesh and also the optimized subdivision surface. Fig-

ure 6.22 shows the error curves for PDM, SDM and TDM.

Figure 6.21: Left: Target ellipsoid and initial mesh (red lines); Middle: Optimized

mesh by SDM; Right: Optimized subdivision surface by SDM

Experiment D3 (Refer to Figures 6.23, 6.24)

In this experiment, a disc-shaped ellipsoid is used as the target shape. The radii are

1.0, 1.0 and0.1. The initial mesh is2.0 × 2.0 × 0.2. The number of control points

in the initial mesh is14. No smoothing term is used. Figure 6.23 shows the target
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Figure 6.22: Error curves for experimentD2

disc, the initial mesh, the optimized mesh and also the optimized subdivision surface.

Figure 6.24 shows the error curves for PDM, SDM and TDM.

Figure 6.23: Left: Target disc and initial mesh (red lines);Middle: Optimized mesh

by SDM; Right: Optimized subdivision surface by SDM

Experiment D4 (Refer to Figures 6.25, 6.26)

In this experiment, the target shape, a disc-shaped ellipsoid, is as the same as that used
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Figure 6.24: Error curves for experimentD3

in experimentD3. The radii are1.0, 1.0 and0.1. The initial mesh is4.0 × 4.0 × 0.4.

The number of control points in the initial mesh is14. No smoothing term is used.

Figure 6.25 shows the target disc, the initial mesh, the optimized mesh and also the

optimized subdivision surface. Figure 6.26 shows the errorcurves for PDM, SDM and

TDM.

Figure 6.25: Left: Target disc and initial mesh (red lines);Middle: Optimized mesh

by SDM; Right: Optimized subdivision surface by SDM
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Figure 6.26: Error curves for experimentD4

Observation: PDM has slow convergence. TDM is unstable when the initial mesh is

far away. SDM works well in these cases.

It is observed that both TDM and SDM converge much faster thanPDM. In experiment

D1, PDM takes282 iterations (7.53 s) to obtain anErms smaller than0.005 while

SDM and TDM just take2 iterations (0.05 s) and1 iteration (0.03 s) respectively. In

experimentD2, PDM takes130 iterations (2.113 s) to obtain anErms smaller than

0.005 while SDM and TDM just take2 iterations (0.04 s) and1 iteration (0.02 s)

respectively. In both experimentsD1 andD2, the fitting errors obtained by TDM are

around20% larger than those obtained by SDM. This can be explained by the fact that

TDM is the Gauss-Newton method and the discarded termr(x)52 r(x) in the Hessian

becomes relatively significant when52r(x) is large. In experimentsD3 andD4, a

disc-shaped ellipsoid is used as the target, in which large curvature regions appear long

the edge of the disc. In experimentD3, the initial mesh is close to the target, TDM

can still work well. The discarded termr(x) 52 r(x) in the Hessian for the Gauss-

Newton method is insignificant whenr(x) is small. PDM takes38 iterations (0.552 to

obtain anErms smaller than0.001 while SDM and TDM just take6 iterations (0.091

s) and3 iterations (0.05 s) respectively. In experimentD4, an initial mesh, which is
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further away from the target when compared with that used in experimentD3, is used.

It is observed that SDM converges faster than PDM (PDM takes83 iterations (1.362

s) to obtain anErms smaller than0.001 while SDM takes12 iterations (0.221 s) to

achieve that) while TDM is not stable in this experiment because of the large initial

residue. The behaviors in the above experiments can be explained by the fact that

TDM is the Gauss-Newton method. As discussed in the previouschapter, the Gauss-

Newton method works poorly in large residual problems because of the ignorance of

curvature-related second order terms in the Hessian.

6.1.5 Convergence Behaviors for Optimizations with Smoothing

Terms

Experiment E1 (Refer to Figure 6.27)

In the previous experimentsA1-D4, no smoothing term is included in the goal func-

tions. In this experiment, a smoothing term is added. A sphere of radii0.5, that has

been used in experimentA1, is used. The coefficient for the smoothing term is0.01.

The initial mesh used, which has14 control points, is identical to the one used in ex-

perimentA1. Figure 6.27 shows the error curves for PDM, SDM and TDM.

Experiment E2 (Refer to Figure 6.28)

In this experiment, the same target and the initial mesh are used as those in the previ-

ous experiment. The coefficient for the smoothing term is0.001. Figure 6.28 shows

the error curves for PDM, SDM and TDM.

Experiment E3 (Refer to Figure 6.29)

In this experiment, the target data used is a ball joint whichis shown in Figure 6.59.

If no smoothing term is included, self-intersections can occur. Here, a smoothing term

is added to avoid self-intersections on the subdivision surface. The coefficient for the

smoothing term is0.01. The number of control points in the initial mesh is128. Fig-

ure 6.29 shows the error curves for PDM, SDM and TDM.

Experiment E4 (Refer to Figure 6.30)

In this experiment, the target data and the initial mesh are identical to those in exper-

iment E3. But, a smaller coefficient,0.001, is used for the smoothing term in this

experiment. Figure 6.30 shows the error curves for PDM, SDM and TDM.
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Figure 6.27: Error curves for experimentE1
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Figure 6.28: Error curves for experimentE2
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Figure 6.29: Error curves for experimentE3
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Figure 6.30: Error curves for experimentE4
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Observation: Like the experiments with no smoothing terms used, SDM and TDM

outperform PDM when smoothing terms are added to the goal functions.

In experimentsE1 andE2, it is observed that SDM and TDM still converge faster than

PDM although the fitting errors obtained are larger than the cases when no smoothing

term is added in experimentA1. In experimentE1, PDM takes20 iterations (2.013

s) to obtain anErms smaller than0.0006 while SDM and TDM just take2 iterations

(0.190 s) and2 iterations (0.180 s) respectively. In experimentE2, PDM takes15

iterations (1.463 s) to obtain anErms smaller than0.0005 while SDM and TDM just

take3 iterations (0.320 s) and1 iteration (0.090 s) respectively. In experimentsE3 and

E4, as in the previous experiments, TDM and SDM converge much faster than PDM.

In experimentE3, PDM takes62 iterations (25.065 s) to obtain anErms smaller than

0.0055 while SDM and TDM just take4 iterations (1.683 s) and3 iterations (1.282

s) respectively. In experimentE4, PDM takes17 iterations (6.739 s) to obtain an

Erms smaller than0.0045 while SDM and TDM just take2 iterations (0.880 s) and

2 iterations (0.881 s) respectively. It is observed that small errors are produced when

a smaller coefficient for the smoothing term is used for PDM, TDM and SDM. The

reason is that the distance functions play a more important role when a smaller coef-

ficient for the smoothing term is used. These experiments show that the inclusion of

the smoothing term will not change the general convergence behavior of PDM, TDM

and SDM. The insight from these experiments is important since the smoothing term

is often needed for avoiding self-intersections, especially during the early stages of the

fitting process.

6.1.6 Convergence Behaviors for Multi-Staged Optimizations

Experiment F1 (Refer to Figure 6.31)

In experimentsA1 - E4, the optimizations are recognized as single-staged optimiza-

tions. The numbers of control points (in effect the numbers of variables in the opti-

mization problems) as well as the coefficients for the smoothing terms are kept con-

stant throughout the whole process. In this experiment, a multi-staged optimization is

demonstrated. The target data used is a ball joint which is shown in Figure 6.59. The

coefficient for the smoothing term is0.01. The initial number of control points in the

initial mesh is128 and new control points are inserted at large error regions through-

out the process. The final numbers of control points for PDM, SDM and TDM are
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217, 172 and184 respectively. Figure 6.31 shows the error curves for PDM, SDM and

TDM.

0 10 20 30 40 50
10

−3

10
−2

10
−1

Iteration

E
rr

or

PDM
SDM
TDM

Figure 6.31: Error curves for experimentF1

Experiment F2 (Refer to Figure 6.32)

In this experiment, the target data used is as the same as the one that used in exper-

iment F1. It is a ball joint which is shown in Figure 6.59. The number ofcontrol

points in the initial mesh is128. Different from experimentF1, the number of control

points is fixed throughout this experiment while the coefficient for the smoothing term

is decreased gradually. The coefficient for the smoothing term has an initial value of

0.01, and it is set to0.001 and0.0001 at the20th and the40th iterations respectively.

Figure 6.32 shows the error curves for PDM, SDM and TDM.

Experiment F3 (Refer to Figure 6.33)

In this experiment, the target data used is as the same as the one that used in experi-

mentsF1 andF2. It is a ball joint which is shown in Figure 6.59. The initial number

of control points in the initial mesh is128 and the initial value of the coefficient for the

smoothing term is0.01. Throughout this experiment, new control points are inserted

around the large error regions and the coefficient for the smoothing term is decreased.
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Figure 6.32: Error curves for experimentF2

The final numbers of control points for PDM, SDM and TDM are202, 199 and151

respectively while the coefficient for the smoothing term isset to0.001 and0.0001 at

the 20th and the40th iterations respectively. Figure 6.33 shows the error curves for

PDM, SDM and TDM.

Observation: Compared with those of the single-staged optimizations, smaller fitting

errors are obtained using the multi-staged optimizations with the increasing degree

of freedom (due to the insertion of control points) or the decreasing coefficient of the

smoothing term. Within each stage of the multi-staged optimizations, same conver-

gence behaviors of PDM, TDM and SDM are observed as those in the singled-staged

cases.

From the experiments, it is observed that SDM and TDM converge faster than PDM.

SDM and TDM also yield smaller fitting error than PDM. These results are significant

and mean that SDM and TDM can work properly in practical settings since the pro-

cess of fitting subdivision surfaces to point clouds of complex shapes often involves

multi-staged optimizations rather than single-staged optimizations.
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Figure 6.33: Error curves for experimentF3

6.1.7 Convergence Behaviors for TDM with Different Smoothing

Term Coefficients

Experiment G1 (Refer to Figure 6.34)

From the previous experiments, we know that TDM is not stablein some cases. In

this experiment, we would like to observe the effect of the smoothing term of different

coefficients on TDM. Figure 6.34 shows the error curves for different coefficients for

the smoothing term for TDM in experimentC1.

Experiment G2 (Refer to Figure 6.35)

In this experiment, we would like to observe the effect of thesmoothing term of differ-

ent coefficients on TDM. Figure 6.35 shows the error curves for different coefficients

for the smoothing term for TDM in experimentB4.

Experiment G3 (Refer to Figure 6.36)

In this experiment, we would like to observe the effect of thesmoothing term of differ-

ent coefficients on TDM. Figure 6.36 shows the error curves for different coefficients

for the smoothing term for TDM in experimentD4.
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Figure 6.34: Error curves for TDM in experimentG1
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Figure 6.35: Error curves for TDM in experimentG2
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Figure 6.36: Error curves for TDM in experimentG3

From Figures 6.34, 6.35 and 6.36, it can be observed that certain values of smoothing

term coefficient can stabilize TDM. However, it is not trivial to determine the appro-

priate value. If the coefficient is too large, the error obtained will be too large. If the

coefficient is too small, TDM cannot be stabilized. In the next section, another method

for stabilizing TDM is examined.

6.1.8 Convergence Behaviors for TDM with the LM Method

In this section, experiments are carried out to investigatethe effect of a trust region

method, the LM method, on the convergence behaviors of TDM. Our implementation

of the LM method is based on the description in [69]. In this implementation, three

parameters,τ , ε1 andε2, need to be determined. The parameterτ is related toνc (a

parameter that is described in the section describing the LMmethod in the previous

chapter) by the fact thatνc having an initial valueτ ×max{aii}, whereaii is the diag-

onal elements in the coefficient matrix.ε1 is related to a stopping criterion, according

to which the inner iterations will be terminated when theL∞ norm for the gradient
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vector is smaller thanε1. ε2 is related to another stopping criterion, according to which

the change of the solution is small. In particular,‖h‖ ≤ ε2(‖x‖ + ε2), wherex is the

current solution andh is the change of the solution. It is not a trivial task to determine

the values of the parameters that can perform well for all cases. Learnt from experi-

ence, we set the parametersτ , ε1 andε2 to 10−8, 10−6 and10−8 respectively.

Inside one inner iteration, several tasks need to be done. They include:(i) obtaining a

step by solving a linear system using the current valueνc; (ii) checking the gain ratio;

(iii) checking stopping criteria and(iv) updating the parameters according to the gain

ratio.

Experiment H1 (Refer to Figure 6.37)

In this experiment, the target data (an ellipsoid of which the radii are0.25, 0.5 and1.0)

and the initial mesh (has the dimensions0.5 × 1.0 × 2.0 and consists of14 control

points) are identical to those in experimentA2. (See Figure 6.3.) No smoothing term

is used. Figure 6.37 shows the error curves for TDM and TDM with the LM method

applied. The zoom-in version (along the y-axis) in Figure 6.38 gives a better illustra-

tion of the effect of the LM method. Figure 6.44(a) shows the error curve of the inner

iterations for the first iteration of the LM method. TDMLM takes1 iteration (0.551 s)

to have anErms smaller than0.002.

Experiment H2 (Refer to Figure 6.39)

In this experiment, the target data (an ellipsoid of which the radii are0.25, 0.5 and1.0)

and the initial mesh (a4.0 × 4.0 × 4.0 cube, which consists of14 control points) are

identical to those in experimentC1. (See Figure 6.17.) No smoothing term is used.

Figure 6.39 shows the error curves for TDM and TDM with the LM method applied.

Figure 6.44(b) shows the error curve of the inner iterationsfor the first iteration of the

LM method. While TDM does not work well for this setup (as shown in experiment

C1), TDMLM takes1 iteration (1.593 s) to have anErms smaller than0.002.

Experiment H3 (Refer to Figure 6.40)

In this experiment, an ellipsoid containing large curvatures (having the radii0.25, 0.5

and4), which has been used in experimentD1, is used as the target. The initial mesh

used has the dimensions0.5 × 1.0 × 8.0 and consists of14 control points. (See Fig-

ure 6.19.) No smoothing term is used. Figure 6.40 shows the error curves for TDM

and TDM with the LM method applied. Figure 6.44(c) shows the error curve of the

inner iterations for the first iteration of the LM method. TDMLM takes1 iteration
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Figure 6.37: Error curves for experimentH1
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Figure 6.38: Error curves for experimentH1 (the zoom-in (along the y-axis) version)
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Figure 6.39: Error curves for experimentH2

(1.221 s) to have anErms smaller than0.005.

Experiment H4 (Refer to Figure 6.41)

In this experiment, another ellipsoid containing large curvatures (having the radii

0.125, 0.25 and4), which has been used in experimentD2, is used as the target. The

initial mesh used has the dimensions0.25 × 0.5 × 8 and consists of14 control points.

(See Figure 6.21.) No smoothing term is used. Figure 6.41 shows the error curves for

TDM and TDM with the LM method applied. Figure 6.44(d) shows the error curve of

the inner iterations for the first iteration of the LM method.TDMLM takes1 iteration

(0.511 s) to have anErms smaller than0.005.

Experiment H5 (Refer to Figure 6.42)

In this experiment, a disc-shaped ellipsoid (having the radii 1.0, 1.0 and0.1), which

has been used in experimentB4, is used as the target. The initial mesh used has the

dimensions2.0 × 2.0 × 0.2 and consists of14 control points. The initial mesh is put

in an orientation that is orthogonal to the target disc. (SeeFigure 6.15.) No smoothing

term is used. Figure 6.42 shows the error curves for TDM and TDM with the LM

method applied. Figure 6.44(e) shows the error curve of the inner iterations for the
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Figure 6.40: Error curves for experimentH3
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Figure 6.41: Error curves for experimentH4
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first iteration of the LM method. TDMLM takes1 iteration (1.662 s) to have anErms

smaller than0.001.
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Figure 6.42: Error curves for experimentH5

Experiment H6 (Refer to Figure 6.43)

In this experiment, a disc-shaped ellipsoid (having the radii 1.0, 1.0 and0.1), which

has been used in experimentD4, is used as the target. The initial mesh used has the

dimensions4.0 × 4.0 × 0.4 and consists of14 control points. (See Figure 6.25.) No

smoothing term is used. Figure 6.43 shows the error curves for TDM and TDM with

the LM method applied. Figure 6.44(f) shows the error curve of the inner iterations

for the first iteration of the LM method. TDMLM takes1 iteration (0.962 s) to have an

Erms smaller than0.001.

Observation: In the occasions which TDM works poorly, the LM method can reduce

the fitting error and improve the stability.

In experimentH1, it can be observed that the LM method improves the stabilityof

TDM. In experimentsH2, H5 andH6, the fitting errors fluctuate in a large range and

fail to converge when the pure TDM is applied. But, when the LMmethod is applied,
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Figure 6.43: Error curves for experimentH6

a smaller and stable fitting error is obtained. In other words, with the use of the LM

method, TDM can tackle the cases which cannot be handled wellusing the pure TDM.

The reason is that the LM method avoids using the poor approximation (in TDM, the

Gauss-Newton method) of the Hessian. More details about theLM method can be

found in the previous chapter. In experimentsH3 andH4, like the pure TDM, the

TDM with the LM method also works well.

Concerning the computational efficiency, longer time is inevitably needed when the

LM method is applied. But, the amount of time required by the LM method (with

TDM) is usually less than that required by PDM method, with the former method giv-

ing smaller fitting errors.

6.1.9 Convergence Behaviors for SDM with the LM Method

In this section, experiments are carried out to investigatethe impact of a trust region

method on the convergence behaviors of SDM. The trust regionmethod used is similar

to the LM method that is applied to the Gauss-Newton method inthe previous section.
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Figure 6.44: Error curves for the inner iterations of the first iteration in the LM method.

(a): ExperimentH1 (14 inner iterations); (b): ExperimentH2 (41 inner iterations);

(c): ExperimentH3 (31 inner iterations); (d): ExperimentH4 (13 inner iterations); (e)

ExperimentH5 (42 inner iterations); (f) ExperimentH6 (27 inner iterations)
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Specifically, a termνcI is added to the approximation of the Hessian. From now on,

we refer this method as SDM with the use of the LM method although the classical LM

method is originally designed to work with the Gauss-Newtonmethod. The parame-

ters for the LM method are set to the same values that have beenused in the previous

section.

Experiment I1 (Refer to Figure 6.45)

In this experiment, the target data (an ellipsoid of which the radii are0.25, 0.5 and1.0)

and the initial mesh (has the dimensions0.5 × 1.0 × 2.0 and consists of14 control

points) are identical to those in experimentA2. (See Figure 6.3.) No smoothing term

is used. Figure 6.45 shows the error curves for SDM and SDM with the LM method

applied. The zoom-in version (along the y-axis) in Figure 6.46 gives a better illustra-

tion of the effect of the LM method. Figure 6.52(a) shows the error curve of the inner

iterations for the first iteration of the LM method. SDMLM takes1 iteration (1.011 s)

to have anErms smaller than0.002.
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Figure 6.45: Error curves for experimentI1

Experiment I2 (Refer to Figure 6.47)

In this experiment, the target data (an ellipsoid of which the radii are0.25, 0.5 and1.0)
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Figure 6.46: Error curves for experimentI1 (the zoom-in (along the y-axis) version)

and the initial mesh (a4.0 × 4.0 × 4.0 cube, which consists of14 control points) are

identical to those in experimentC1. (See Figure 6.17.) No smoothing term is used.

Figure 6.47 shows the error curves for SDM and SDM with the LM method applied.

Figure 6.52(b) shows the error curve of the inner iterationsfor the first iteration of the

LM method. SDMLM takes1 iteration (1.042 s) to have anErms smaller than0.002.

Experiment I3 (Refer to Figure 6.48)

In this experiment, an ellipsoid containing large curvatures (having the radii0.25, 0.5

and4), which has been used in experimentD1, is used as the target. The initial mesh

used has the dimensions0.5 × 1.0 × 8.0 and consists of14 control points. (See Fig-

ure 6.19.) No smoothing term is used. Figure 6.48 shows the error curves for SDM and

SDM with the LM method applied. Figure 6.52(c) shows the error curve of the inner

iterations for the first iteration of the LM method. SDMLM takes1 iteration (1.321 s)

to have anErms smaller than0.005.

Experiment I4 (Refer to Figure 6.49)

In this experiment, another ellipsoid containing large curvatures (having the radii

0.125, 0.25 and4), which has been used in experimentD2, is used as the target. The
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Figure 6.47: Error curves for experimentI2
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Figure 6.48: Error curves for experimentI3
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initial mesh used has the dimensions0.25 × 0.5 × 8 and consists of14 control points.

(See Figure 6.21.) No smoothing term is used. Figure 6.49 shows the error curves for

SDM and SDM with the LM method applied. Figure 6.52(d) shows the error curve of

the inner iterations for the first iteration of the LM method.SDMLM takes1 iteration

(0.711 s) to have anErms smaller than0.005.
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Figure 6.49: Error curves for experimentI4

Experiment I5 (Refer to Figure 6.50)

In this experiment, a disc-shaped ellipsoid (having the radii 1.0, 1.0 and0.1), which

has been used in experimentB4, is used as the target. The initial mesh used has

the dimensions2.0 × 2.0 × 0.2 and consists of14 control points. (See Figure 6.15.)

The initial mesh is placed in an orientation that is orthogonal to the target shape. No

smoothing term is used. Figure 6.50 shows the error curves for SDM and SDM with

the LM method applied. Figure 6.52(e) shows the error curve of the inner iterations

for the first iteration of the LM method. SDMLM takes1 iteration (2.231 s) to have an

Erms smaller than0.001.

Experiment I6 (Refer to Figure 6.51)

In this experiment, a disc-shaped ellipsoid (having the radii 1.0, 1.0 and0.1), which
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Figure 6.50: Error curves for experimentI5

has been used in experimentD4, is used as the target. The initial mesh used has the

dimensions4.0 × 4.0 × 0.4 and consists of14 control points. (See Figure 6.25.) No

smoothing term is used. Figure 6.51 shows the error curves for SDM and SDM with

the LM method applied. Figure 6.52(f) shows the error curve of the inner iterations

for the first iteration of the LM method. SDMLM takes1 iteration (1.743 s) to have an

Erms smaller than0.001.

Observation: The LM method improves the stability of SDM, but the effect isnot as

obvious as that in TDM.

From the experimentI1, it can be observed that the LM method improves the stability

of SDM. With the use of the LM method, different local minima can be obtained. For

example, in experimentsI3, I4, I5 andI6, the fitting errors obtained by pure SDM

are smaller although the stability has been slightly improved with the use of the LM

method.

Similar to the cases in TDM, longer computational time is required when the LM

method is applied. The time required by SDMLM is comparable to the time required
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Figure 6.51: Error curves for experimentI6

by TDMLM. Since SDM is more stable than TDM, the effect of the LM method is less

obvious.

6.1.10 Convergence Behaviors for Optimizations with the Armijo

Method

Trust region method, which has been studied in the previous sections, is one way for

ensuring the global convergence of an optimization method.Step size control method

is another approach for achieving global convergence [47, 59, 67, 68, 72]. In this sec-

tion, the effectiveness of a step size control strategy, theArmijo method, is investi-

gated. Specifically, when a current pointxc is given, the next positionx+ = xc − αpc,

needs to be found.pc is the proposed step returned from PDM, TDM and SDM while

α is the step size for the movement determined by the Armijo method. In the imple-

mentation,α is set to1 initially. The sufficient condition (described in the previous

chapter) is checked. If the sufficient condition is satisfied, the current value ofα will

be accepted. Otherwise,α will be halved. The process is repeated until a value ofα

to satisfy the sufficient condition has been found orα has been halved for more than
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Figure 6.52: Error curves for the inner iterations of the first iteration in the LM method.

(a): ExperimentI1 (27 inner iterations); (b): ExperimentI2 (26 inner iterations);

(c): ExperimentI3 (38 inner iterations); (d): ExperimentI4 (24 inner iterations); (e)

ExperimentI5 (55 inner iterations); (f) ExperimentI6 (45 inner iterations)
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the pre-determined maximum number of time (in our implementation, it is set to20)

to avoid infinite looping.

Experiment J1 (Refer to Figure 6.53)

In this experiment, the target data (an ellipsoid of which the radii are0.25, 0.5 and1.0)

and the initial mesh (has the dimensions0.5 × 1.0 × 2.0 and consists of14 control

points) are identical to those in experimentA2. (See Figure 6.3.) No smoothing term

is used. Figure 6.53 shows the error curves. PDMSC takes50 iterations (2.004 s) to

obtain anErms larger than0.002 while SDMSC and TDMSC take2 iterations (0.080

s) and1 iteration (0.040 s) respectively.
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Figure 6.53: Error curves for experimentJ1

Experiment J2 (Refer to Figure 6.54)

In this experiment, the target data (an ellipsoid of which the radii are0.25, 0.5 and1.0)

and the initial mesh (a4.0 × 4.0 × 4.0 cube, which consists of14 control points) are

identical to those in experimentC1. (See Figure 6.17.) No smoothing term is used.

Figure 6.54 shows the error curves. PDMSC has anErms larger than0.002 after100

iterations (4.138 s) while SDMSC and TDMSC just take5 iterations (0.240 s) and12

iterations (0.812 s) to obtainErms smaller than0.002 respectively.
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Figure 6.54: Error curves for experimentJ2

Experiment J3 (Refer to Figure 6.55)

In this experiment, an ellipsoid containing large curvatures (having the radii0.25, 0.5

and4.0), which has been used in experimentD1, is used as the target. The initial mesh

used has the dimensions0.5 × 1.0 × 8.0 and consists of14 control points. (See Fig-

ure 6.19.) No smoothing term is used. Figure 6.55 shows the error curves. PDMSC has

anErms larger than0.005 after300 iterations (52.862 s) while SDMSC and TDMSC

just take2 iterations (0.080 s) and1 iteration (0.030 s) to obtain anErms smaller than

0.005 respectively.

Experiment J4 (Refer to Figure 6.56)

In this experiment, another ellipsoid containing large curvatures (having the radii

0.125, 0.25 and4), which has been used in experimentD2, is used as the target. The

initial mesh used has the dimensions0.25 × 0.5 × 8 and consists of14 control points.

(See Figure 6.21.) No smoothing term is used. Figure 6.56 shows the error curves.

PDMSC has anErms larger than0.005 after300 iterations (71.320 s) while SDMSC

and TDMSC just take2 iterations (0.070 s) and1 iteration (0.030 s) to obtain anErms

smaller than0.005 respectively.



CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSIONS 90

0 50 100 150 200 250 300

10
−3

10
−2

10
−1

Iteration

E
rr

or

PDM
PDMSC
SDM
SDMSC
TDM
TDMSC

Figure 6.55: Error curves for experimentJ3

Experiment J5 (Refer to Figure 6.57)

In this experiment, the target data (a disc-shaped ellipsoid of which the radii are1.0,

1.0 and0.1) and the initial mesh (2.0× 2.0× 0.2, which consists of14 control points)

are identical to those in experimentB4. (See Figure 6.15.) The initial mesh is placed

in an orientation which is orthogonal to the target shape. Nosmoothing term is used.

Figure 6.57 shows the error curves. PDMSC has anErms larger than0.001 after100

iterations (26.429 s) while SDMSC and TDMSC just take16 iterations (0.741 s) and

10 iterations (0.501 s) to obtainErms smaller than0.001 respectively.

Experiment J6 (Refer to Figure 6.58)

In this experiment, the target data (a disc-shaped ellipsoid of which the radii are1.0,

1.0 and0.1) and the initial mesh (4.0× 4.0× 0.4, which consists of14 control points)

are identical to those in experimentD4. (See Figure 6.25.) No smoothing term is used.

Figure 6.58 shows the error curves. PDMSC has anErms larger than0.001 after100

iterations (6.426 s) while SDMSC and TDMSC just take12 iterations (0.480 s) and9

iterations (0.410 s) to obtainErms smaller than0.001 respectively.
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Figure 6.56: Error curves for experimentJ4
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Figure 6.57: Error curves for experimentJ5
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Figure 6.58: Error curves for experimentJ6

Observation: The Armijo method improves the stability of PDM, TDM and SDM.

From the experiments, with the use of the step size control method, all PDM, TDM

and SDM are stable. In experimentsJ2, J5 andJ6, in which TDM performs poorly

because of the far-away initial mesh, the step size control method improves the fitting

error dramatically. The price paid for the step size controlmethod is the much longer

computational time. For details statistics, see the table for the time statistics of these

experiments in section 6.1.13. When compared with the LM method, it is observed

that the cost required by the Armijo method is smaller.

6.1.11 Conclusions from Experiments

From the above experiments, it is observed that TDM and SDM converge much faster

than PDM. These agree with the facts that PDM is the gradient descent method which

has linear convergence rate while TDM and SDM are the Gauss-Newton method and

the Newton method respectively.
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SDM and TDM have better capabilities in overcoming the poorly aligned initial meshes.

ExperimentsB1-B4 demonstrate this. This is due to the fact that tangential move-

ments of control points are hindered in PDM. For more complextarget data, if local

subdivision is allowed (i.e. multi-staged optimizations), more control points are re-

quired for PDM than when compared with SDM and TDM, in additional to the slower

convergence rate. ExperimentsF2 andF3 show this.

In cases which the initial meshes are far away from the targetshapes, such as the

data used in experimentsB4, C1 andD4, TDM fails to converge. These experimen-

tal results can be explained theoretically by the fact that TDM is the Gauss-Newton

method and second-order termsr(x) 52 r(x) are discarded in the Hessian. The ig-

nored term becomes significant when eitherr(x) or 52r(x) is larger. With the use

of the LM method, TDM can handle these cases in a better way by shifting the local

model closer to the steepest descent method if the current local model is detected to

be a poor approximation to the goal function. The local modelis shifted closer to the

Gauss-Newton method if the current local model is detected to be a good approxima-

tion to the goal function for faster convergence. Experimental results agree with the

theoretical analysis. Besides the LM method, the Armijo method also shows the stabi-

lizing powers in the experiments. In the Armijo method, linesearch is performed after

the original PDM, SDM or TDM is carried out. One difference between the Armijo

method and the LM method is that only the step size is modified in the Armijo method

while both the search direction and the step size are modifiedin the LM method.

6.1.12 Stability of TDM: from Computational Point of View

From the experiments, it is observed that pure TDM can be unstable in some situations.

Theoretically, we know that it is due to the poor approximations of the Hessian in some

cases. From the computational point of view, it can also be noticed that the coefficient

matrices formed from TDM have largest condition numbers than those from PDM and

SDM. It is well known that large condition numbers can lead tounstable computations;

and this fact can also account for the observed unstable behaviors for TDM in some of

the experiments. Table 6.1 gives the condition numbers of the coefficient matrices in

one particular iteration of PDM, SDM and TDM in experimentsA1 andE3.
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PDM cond. no. SDM cond. no. TDM cond. no.

Experiment A1 64.78, 89.95 1.776 × 105, 6.68 × 105 1.06 × 106, 3.07 × 106

Experiment E3 7.21, 14.29 128.24, 356.87 153.85, 410.72

Table 6.1: Condition numbers of coefficient matrices in one particular iteration of

PDM, SDM and TDM in experimentsA1 andE3. In each condition number entry,

the first number is the 2-norm condition number and the secondnumber is the infinity-

norm condition number.

6.1.13 Computational Issues

The codes of PDM and TDM are adapted from that of SDM by replacing the SD error

function(2.5) with the PD error function(2.2) and the TD error function(2.3) respec-

tively.

Note that distance field pre-computation is needed for all PDM, TDM and SDM. Nor-

mal vector information is needed for TDM and SDM. Curvature pre-computation is

only required by SDM. Tables 6.2, 6.3, 6.4 and 6.5 show some time statistics for the

experiments.

Regarding the computational efficiency, SDM needs much longer time than PDM and

TDM on pre-computation since curvature information is not required in PDM and

TDM. In each iteration, SDM takes more time since SDM needs extra time to set up

the more complex distance function.

6.2 More Examples

In this section, we present more examples to show that our fitting method works well

in fitting subdivision surfaces to more complex target pointclouds. The models are

scaled such that the longest dimension of the model is1.0.

Figures 6.59, 6.60, 6.61, 6.62, 6.63 and 6.64 show the data sets for a head (Igea), a

ball joint, a rocker arm, an armadillo, a bunny and a buddha (Igea, the ball joint and

the rocker arm come from http://www.cyberware.com. The armadillo, the bunny and

the buddha come from http://www-graphics.stanford.edu/data/3Dscanrep/.). The fig-

ures show the initial meshes, the optimized control meshes by SDM, the initial and the

optimized subdivision surfaces with color error coding andthe shaded optimized sub-
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PDM SDM TDM

Experiment A1 (100 iters.) 7.148s 8.281s 7.482s

Experiment A2(100 iters.) 1.602s 1.644s 1.783s

Experiment B1 (300 iters.) 1.733s 1.784s 1.703s

Experiment B2 (300 iters.) 15.230s 15.564s 14.606s

Experiment B3 (100 iters.) 1.862s 2.643s 2.615s

Experiment B4(100 iters.) 1.854s 1.844s 1.854s

Experiment C1 (100 iters.) 1.762s 1.920s 1.833s

Experiment D1 (300 iters.) 4.728s 5.075s 5.125s

Experiment D2 (300 iters.) 5.006s 5.389s 5.238s

Experiment D3 (100 iters.) 1.745s 1.701s 1.602s

Experiment D4 (100 iters.) 1.692s 1.723s 1.543s

Experiment E1 (100 iters.) 10.355s 10.358s 10.210s

Experiment E2 (100 iters) 10.596s 10.675s 10.475s

Experiment E3 (100 iters.) 36.402s 38.006s 38.139s

Experiment E4 (100 iters.) 36.301s 38.469s 38.665s

Experiment F1 (50 iters.) 23.365s 23.635s 24.775s

Experiment F2 (50 iters.) 18.345s 19.450s 19.413s

Experiment F3 (50 iters.) 21.028s 25.169s 20.874s

Table 6.2: Time statistics for experimentsA1-F3. Pre-processing time is not included.

division surfaces. Blue, green, yellow and red represent errors in the ranges [0, 0.005),

[0.005, 0.01), [0.01, 0.015) and [0.015,∞), respectively.

Table 6.6 gives the timing data for the preprocessing steps.At a data point, nearby

points that lie within its neighborhood of0.03 are used for computing the curvatures.

Table 6.7 shows error statistics. Table 6.8 shows the breakdown of the time used in

different tasks in optimization. From Table 6.8, we observethat the time for gener-

ating entries of the matrix of the linear equations is substantial when compared with

other parts. Note that the number of data points affects onlythe time used for the pre-

processing steps, but does not affect the time used in the optimization step, which is

mainly determined by the number of control points.

We would like to compare the fitting result of the Igea model inFigure 6.60 with that

in [35]. In that paper, the projection direction is different from that in our approach.

In [35], target data points are projected on the fitting subdivision surface. In our ap-



CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSIONS 96

Erms Threshold Time(without LM) Time (with LM)

Experiment H1 0.002 0.010s 0.551s

Experiment H2 0.002 N.A. (very unstable) 1.593s

Experiment H3 0.005 0.030s 1.221s

Experiment H4 0.005 0.020s 0.511s

Experiment H5 0.001 N.A. (very unstable) 1.662s

Experiment H6 0.001 N.A. (very unstable) 0.962s

Table 6.3: Time statistics for experimentsH1-H6. Time required forErms to fall

below the threshold is presented. Pre-processing time is not included.

Erms Time(without LM) Time (with LM)

Experiment I1 0.002 0.020s 1.011s

Experiment I2 0.002 0.071s 1.042s

Experiment I3 0.005 0.050s 1.321s

Experiment I4 0.005 0.040s 0.711s

Experiment I5 0.001 0.151s 2.231s

Experiment I6 0.001 0.221s 1.743s

Table 6.4: Time statistics for experimentsI1-I6. Time required forErms to fall below

the threshold is presented. Pre-processing time is not included.

proach, sample points on the subdivision surface are projected on the target shape.

Projecting target data points on the fitting subdivision surface has an advantage that the

details of the target shape will not be missed by the fitting subdivision surface easily.

However, projecting target data points on the fitting subdivision surface also implies

that the foot points of the target data points on the fitting subdivision surface cannot be

precomputed efficiently.

From Table6.9, we can see that our approach obtains a smallerErms within a shorter

time although using a larger number of control points (The PCon which we run the

experiment has the same specification as that used in [35]). It is noticed that our

approach gives a slightly higherEm error. But, since we compute the error by finding

the closest target data point for each sample point on the subdivision surface instead of

computing the shortest distance between the sample point tothe target shape, we have

over-estimated the error. Indeed, the average spacing between the target data point in

this point cloud is0.004837, which is in the same order magnitude of ourEm error

(0.004495) (The Igea model that we use has the dimensions0.696 × 0.997 × 1.0).
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Erms Time(without step size control)Time (with step size control)

Experiment J1 (SDM) 0.002 0.020s 0.080s

Experiment J1 (TDM) 0.002 0.010s 0.040s

Experiment J2 (SDM) 0.002 0.071s 0.240s

Experiment J2 (TDM) 0.002 N.A. (very unstable) 0.812s

Experiment J3 (SDM) 0.005 0.050s 0.080s

Experiment J3 (TDM) 0.005 0.030s 0.040s

Experiment J4 (SDM) 0.005 0.040s 0.070s

Experiment J4 (TDM) 0.005 0.020s 0.030s

Experiment J5 (SDM) 0.001 0.151s 0.741s

Experiment J5 (TDM) 0.001 N.A. (very unstable) 0.501s

Experiment J6 (SDM) 0.001 0.221s 0.480s

Experiment J6 (TDM) 0.001 N.A. (very unstable) 0.410s

Table 6.5: Time statistics for experimentsJ1-J6. Time required forErms to fall below

the threshold is presented. Pre-processing time is not included.

No. of data points Curvatures Distance fields

Ball joint 137062 95.83s 52.51s

Igea 134345 36.07s 215.69s

RockerArm 40177 14.91s 70.48s

Armadillo 172974 4.44s 191.47s

Bunny 35201 212.74s 148.26s

Buddha 543652 4837.67s 200.66s

Table 6.6: Time statistics for pre-computing curvatures and distance fields. Time is

measured in seconds.
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No. of No. of Smoothing Em Erms

iterations control points term coefficient

Ball joint 29 416, 551 0.01, 0.0001 0.0035 0.0008

Igea 14 526, 2464 0.01, 0.00001 0.0029 0.0005

RockerArm 15 870, 950 0.01, 0.00001 0.0018 0.0003

Armadillo 12 602, 9602 0.01, 0.00001 0.0212 0.0020

Bunny 14 919, 996 0.01, 0.00001 0.0037 0.0009

Buddha 7 4668, 4773 0.01, 0.00001 0.0032 0.0004

Table 6.7: Statistics for the examples. The numbers inNo. of control pointsfield refer

to the number of control points in the initial control meshesand the final optimized

control meshes. The numbers inSmoothing term coefficientrefer to the initial and the

final values for the smoothing term coefficient. The total time does not include the

time on pre-computation.

Equations Equations Error Total

setup solving evaluation time

Ball joint 38.68s 31.17s 3.61s 73.47s

Igea 60.04s 51.79s 6.85s 118.69s

RockerArm 41.04s 30.52s 6.86s 78.43s

Armadillo 506.56s 51.75s 65.25s 623.56s

Bunny 39.63s 32.57s 5.13s 77.35s

Buddha 394.09s 112.18s 20.58s 526.86s

Table 6.8: Time statistics. Time is measured in seconds.

Final no. of Em Erms Time taken

control points (%) (%) (min:sec)

Result in [35] 1553 0.247 0.05755 8:29

Our result 2464 0.185 0.03251 1:58

Table 6.9: Comparison with the approach in [35] for the Igea model. The errorsEm

andErms are expressed in percentage of the diagonal of the model.



CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSIONS 99

(a) (b) (c)

(d) (e) (f)

Figure 6.59: Ball Joint: (a) Point cloud. (137062 points; dimensions:0.87× 0.50× 1)

(b) Initial mesh. (416 control points) (c) Initial subdivsion surface. (d) Shadedsub-

division surface. (e) Optimized mesh. (551 control points) (f) Optimized subdivision

surface. Max. Err.: 0.0035; RMS. Err.: 0.0008.
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(a) (b) (c)

(d) (e) (f)

Figure 6.60: Igea: (a) Point cloud. (134345 points; dimensions:0.70×1×1) (b) Initial

mesh. (526 control points) (c) Initial subdivision surface. (d) Shaded subdivision

surface. (e) Optimized mesh. (2464 control points) (f) Optimized subdivision surface.

Max. Err: 0.0029; RMS. Err.: 0.0005.
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(a) (b) (c)

(d) (e) (f)

Figure 6.61: RockerArm: (a) Point cloud. (40177 points; dimensions:0.51×1×0.30)

(b) Initial mesh. (870 control points) (c) Initial subdivision surface. (d) Optimized sub-

division surface. (e) Optimized mesh. (950 control points) (f) Optimized subdivision

surface. Max. Err.: 0.0018; RMS. Err.: 0.0003.
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(a)

(b) (c)

(d) (e)

Figure 6.62: Armadillo: (a) Point cloud. (172974 points; dimensions:0.84×0.76×1)

(b) Initial mesh. (602 control points) (c) Initial subdivision surface. (d) Optimized

mesh. (9602 control points) (e) Optimized subdivision surface. Max. Err.: 0.0212;

RMS. Err.: 0.0020.
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(a) (b) (c)

(d) (e) (f)

Figure 6.63: Bunny: (a) Point cloud. (35201 points; dimensions:1 × 0.78 × 0.99) (b)

Initial mesh. (919 control points) (c) Initial subdivision surface. (d) Optimized sub-

division surface. (e) Optimized mesh. (996 control points) (f) Optimized subdivision

surface. Max. Err.: 0.0037; RMS. Err.: 0.0009.
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(a) (b) (c)

(d) (e) (f)

Figure 6.64: Buddha: (a) Point cloud. (543652 points; dimensions:0.41×0.41×1) (b)

Initial mesh. (4668 control points) (c) Initial subdivision surface. (d) Optimized sub-

division surface. (e) Optimized mesh. (4773 control points) (f) Optimized subdivision

surface. Max. Err.:0.0032; RMS. Err.:0.0004.



Chapter 7

Conclusion and Future Work

In this piece of research work, we have studied different optimization methods, which

include PDM, TDM, SDM, for fitting subdivision surfaces to unorganized points.

Among them, SDM is newly introduced to the problem of subdivision surface fit-

ting. On top of that, we apply the LM method (a trust region method) and the Armijo

method (a line search method), to improve the stability of the fitting process. From the

experiments, we observe that the behaviors of various fitting methods agree with what

the underlying theories in optimization predict.

An important contribution of this thesis is that we give a clear picture about the re-

lationships between different distance error functions ingoal functions in surface fit-

ting problem and the optimization theories. Specifically, we show that PDM, TDM

and SDM are indeed the gradient descent method, the Gauss-Newton method and the

Newton method in optimization theories. Theoretically, weprove that SDM is derived

from the standard Newton method. To ensure the positive definiteness of the Hessian,

slight modification is applied at some circumstances.

Our experiments show that both SDM and TDM converge much faster than PDM.

Since the Newton method has quadratic convergence, this result explains the superior

convergence behavior of SDM over PDM, which is known to have linear convergence.

TDM, as the Gauss-Newton method, is also expected to have faster convergence rate

than the commonly used PDM. From experiments in which large curvature regions are

present in the target data, TDM does not work well around the large curvature regions.

And this behavior can be explained by the fact that some curvatures-related second

order terms in the Hessian are discarded in the Gauss-Newtonmethod.

105
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With the use of the LM method, the agreement between the localapproximated model

and the actual goal function is checked. As demonstrated in the experiments, the LM

method solves the stability problem of TDM when the target shapes contain large cur-

vature regions.

With the use of the Armijo method, the step size of a step is computed after the direc-

tion is determined by some other methods. As shown in the experiments, the Armijo

method improves the stability of the optimization process.

There are several problems that still call for further research. First, a more effective

method needs to be devised to determine the coefficientλ for the smoothness termFs.

Second, features like edges and corners in data sets can be detected in order to make the

subdivision surfaces preserve the detected features in a better way. Third, we would

like to study the various fitting methods described in this thesis to fitting surfaces

to noisy point clouds, for which it is difficult to have accurate curvature estimation

required by SDM presented here. Fourth, the fitting methods described in this thesis

should be able to be adapted to deal with target shapes with open boundaries. Fifth,

SDM should be able to handle the 3D deformable model registration problem after

appropriate modifications. Finally, the fitting approach described here is still a local

optimization technique. In this regard, there is a need to design an active subdivision

scheme that allows the fitting surface to evolve from a simpleinitial shape to converge

to a given target shape in a global manner, as what has been done in other active contour

approaches such as the snake method [12,13] and the level-set method [15–19].
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